Time filter

Source Type

Rennes, France

Ye Z.-W.,Catholic University of Leuven | Camus S.,Biopredic International | Augustijns P.,Catholic University of Leuven | Annaert P.,Catholic University of Leuven
Biopharmaceutics and Drug Disposition | Year: 2010

Hepatotoxicity has been reported as a side-effect in some patients on HIV protease inhibitors (PI). Since transporter interaction has been implicated as a mechanism underlying drugmediated hepatotoxicity and drug-drug interactions, the interaction of PI with the hepatic canalicular efflux transporter ABCC2 (MRP2; multidrug resistance associated protein-2) was studied. Interaction with ABCC2/Abcc2 was evaluated in human and rat sandwich-cultured hepatocytes using 5(6)-carboxy-2′,7′-dichlorofluorescein (CDF) as substrate. In rat hepatocytes, interaction with estradiol-17-β-D-glucuronide (E17G) efflux was also studied. In human hepatocytes, saquinavir, ritonavir and atazanavir were the most efficient inhibitors of ABCC2-mediated biliary excretion of CDF, whereas in rat hepatocytes indinavir, lopinavir and nelfinavir were the most efficient. No species-similarity was found for ABCC2/Abcc2 inhibition. In rat hepatocytes, the effects on Abcc2 were substrate-dependent as inhibition of biliary excretion of E17G was most pronounced for saquinavir (completely blocked), amprenavir (82% inhibition) and indinavir (68% inhibition). In conclusion, several HIV PI showed substantial ABCC2 inhibition, which, combined with the effects of PI on other hepatobiliary disposition mechanisms, will determine the clinical relevance of these in vitro interaction data. Copyright © 2010 John Wiley & Sons, Ltd.

Tsuji S.,Bio Frontier Project Promotion Section | Kawamura F.,Tottori University | Kubiura M.,Tottori University | Hayashi A.,Tottori University | And 5 more authors.
PLoS ONE | Year: 2014

Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps. © 2014 Tsuji et al.

Murayama N.,Showa Pharmaceutical University | Usui T.,Nikkyo Technos Co. | Slawny N.,3D Biomatrix | Chesne C.,Biopredic International | Yamazaki H.,Showa Pharmaceutical University
Drug Metabolism Letters | Year: 2015

Recent guidance/guidelines for industry recommend that cytochrome P450 induction can be assessed using human hepatocyte enzyme activity and/or mRNA levels to evaluate potential drug– drug interactions. To evaluate time-dependent cytochrome P450 induction precisely, induction of CYP1A2, CYP2B6, and CYP3A4 mRNA was confirmed (> 2-fold) by the treatment with omeprazole, phenobarbital, and rifampicin, respectively, for 24 or 48 h on day 3 from the start of culture. After 24 h, the fold induction of CYP1A2 with 3.6 and 1.8 × 104 HepaRG cells per well was lower than that for 7.2 × 104 cells. CYP1A2 induction levels at 24 h were higher than those after 48 h. In contrast, higher CYP2B6 inductions were confirmed after 48 h exposure than after 24 h, independent of the number of cells per well. To help reduce the use of human cryopreserved hepatocytes, typical P450-dependent enzyme activities were investigated in human HepaRG cells cultured in commercial hanging-drop plates. Newly designed 96-well hanging-drop plates were capable of maintaining human CYP3A-dependent midazolam hydroxylation activities for up to 4 days using only 10% of the recommended initial 7.2 × 104 cells per well. Favorable HepaRG function using hanging-drop plates was confirmed by detecting 1′- hydroxymidazolam O-glucuronide on day 3, suggesting an improvement over traditional control plates in which this metabolite can be detected for 24-well plates. These results suggest that the catalytic function and/or induction of CYP1A2, CYP2B6, and CYP3A4 can be readily assessed with reduced numbers of starting HepaRG cells cultured in three-dimensional cultures in drops prepared with hanging-drop plates. © 2015 Bentham Science Publishers.

Leite S.B.,Vrije Universiteit Brussel | Roosens T.,Vrije Universiteit Brussel | El Taghdouini A.,Vrije Universiteit Brussel | Mannaerts I.,Vrije Universiteit Brussel | And 6 more authors.
Biomaterials | Year: 2016

Current models for in vitro fibrosis consist of simple mono-layer cultures of rodent hepatic stellate cells (HSC), ignoring the role of hepatocyte injury. We aimed to develop a method allowing the detection of hepatocyte-mediated and drug-induced liver fibrosis. We used HepaRG (Hep) and primary human HSCs cultured as 3D spheroids in 96-well plates. These resulting scaffold-free organoids were characterized for CYP induction, albumin secretion, and hepatocyte and HSC-specific gene expression by qPCR. The metabolic competence of the organoid over 21 days allows activation of HSCs in the organoid in a drug- and hepatocyte-dependent manner. After a single dose or repeated exposure for 14 days to the pro-fibrotic compounds Allyl alcohol and Methotrexate, hepatic organoids display fibrotic features such as HSC activation, collagen secretion and deposition. Acetaminophen was identified by these organoids as an inducer of hepatotoxic-mediated HSC activation which was confirmed in vivo in mice. This novel hepatic organoid culture model is the first that can detect hepatocyte-dependent and compound-induced HSC activation, thereby representing an important step forward towards in vitro compound testing for drug-induced liver fibrosis. © 2015 Elsevier Ltd.

Klein S.,Saarland University | Mueller D.,Saarland University | Schevchenko V.,Biopredic International | Noor F.,Saarland University
Journal of Applied Toxicology | Year: 2014

Chronic repeated-dose toxicity studies are still carried out on animals and often do not correlate with the effects in human beings mainly due to species-specific differences in biotransformation. The human hepatoma cell line HepaRG has been used for human relevant toxicity assessment. However, HepaRG cells are commonly maintained in serum containing medium which limits their use in 'omics'-based toxicology. In this study, we compared the maintenance of HepaRG cells in standard serum-supplemented and serum-free conditions. Viability and Cytochrome P450 (CYP) activity during long-term cultivation were assessed. Liver-specific albumin and urea production was measured. The extracellular metabolome (amino acids, glucose, lactate and pyruvate) was measured to compare different cultivation conditions using metabolic flux analysis. Although metabolic flux analysis reveals differences in certain parts of the metabolism, e.g. production of urea, the overall metabolism of serum-free and serum-supplemented cultured HepaRG cells is similar. We conclude that HepaRG cells can be maintained in optimized serum-free conditions for 30days without viability change and with high CYP activity. We also tested the acute (24h) and long-term repeated-dose (7 doses, every second day) toxicity of valproic acid. We calculated an EC50 value of 1.4mM after repeated exposure which is close to the cmax value for valproic acid. Maintenance of HepaRG cells in serum-free conditions opens up the opportunity for the use of these cells in human long-term repeated-dose hepatotoxicity studies and for application in systems toxicology. © 2013 John Wiley & Sons, Ltd.

Discover hidden collaborations