BiOnSil Srl

Milano, Italy

BiOnSil Srl

Milano, Italy
SEARCH FILTERS
Time filter
Source Type

Grassilli E.,University of Milan Bicocca | Grassilli E.,BiOnSil Srl | Narloch R.,University of Milan Bicocca | Federzoni E.,University of Milan Bicocca | And 13 more authors.
Clinical Cancer Research | Year: 2013

Purpose: Evasion from chemotherapy-induced apoptosis due to p53 loss strongly contributes to drug resistance. Identification of specific targets for the treatment of drug-resistant p53-null tumors would therefore increase the effectiveness of cancer therapy. Experimental Design: By using a kinase-directed short hairpin RNA library and HCT116p53KO drugresistant colon carcinoma cells, glycogen synthase kinase 3 beta (GSK3B) was identified as a target whose silencing bypasses drug resistance due to loss of p53. p53-null colon cancer cell lines with different sets of mutations were used to validate the role of GSK3B in sustaining resistance and to characterize cell death mechanisms triggered by chemotherapy when GSK3B is silenced. In vivo xenograft studies were conducted to confirmresensitization of drug-resistant cells to chemotherapyuponGSK3inhibition. Colon cancer samples from a cohort of 50 chemotherapy-treated stage II patients were analyzed for active GSK3B expression. Results: Downregulation of GSK3B in various drug-resistant p53-null colon cancer cell lines abolished cell viability and colony growth after drug addition without affecting cell proliferation or cell cycle in untreated cells. Cell death of 5-fluorouracil (5FU)-treated p53-null GSK3B-silenced colon carcinoma cells occurred via PARP1-dependent and AIF-mediated but RIP1-independent necroptosis. In vivo studies showed that drug-resistant xenograft tumor mass was significantly reduced only when 5FU was given after GSK3B inhibition. Tissue microarray analysis of colon carcinoma samples from 5FU-treated patients revealed that GSK3B is significantly more activated in drug-resistant versus responsive patients. Conclusions: Targeting GSK3B, in combination with chemotherapy, may represent a novel strategy for the treatment of chemotherapy-resistant tumors. © 2013 American Association for Cancer Research.


Grassilli E.,University of Milan Bicocca | Grassilli E.,BiOnSil Srl | Ianzano L.,University of Milan Bicocca | Bonomo S.,University of Milan Bicocca | And 5 more authors.
PLoS ONE | Year: 2014

Glycogen Synthase Kinase-3 alpha (GSK3A) and beta (GSK3B) isoforms are encoded by distinct genes, are 98% identical within their kinase domain and perform similar functions in several settings; however, they are not completely redundant and, depending on the cell type and differentiative status, they also play unique roles. We recently identified a role for GSK3B in drug resistance by demonstrating that its inhibition enables necroptosis in response to chemotherapy in p53-null drug-resistant colon carcinoma cells. We report here that, similarly to GSK3B, also GSK3A silencing/inhibition does not affect cell proliferation or cell cycle but only abolishes growth after treatment with DNA-damaging chemotherapy. In particular, blocking GSK3A impairs DNA repair upon exposure to DNA-damaging drugs. As a consequence, p53-null cells overcome their inability to undergo apoptosis and mount a necroptotic response, characterized by absence of caspase activation and RIP1-independent, PARP-dependent AIF nuclear re-localization. We therefore conclude that GSK3A is redundant with GSK3B in regulating drug-resistance and chemotherapy-induced necroptosis and suggest that inhibition of only one isoform, or rather partial inhibition of overall cellular GSK3 activity, is enough to re-sensitize drug-resistant cells to chemotherapy. © 2014 Grassilli et al.


Patent
Bionsil S.R.L. | Date: 2012-06-25

The use of compounds is described which are capable of functionally blocking at least one of the genes chosen from the group composed of EphAI, EphA2, EphA8, EphB2, CSF1R, VEGFR2, RAMP2, RAMP3, CLRN1, MAPK4, PIK3C2A, PIK3CG, GSK3alpha, GSK3beta, IRAK3, DAPK1, JAK1, PIM1, TRB3, BTG1, LATS1, LIMK2, MYLK, PAK1, PAK2, CDC2, BTK, PNRC2, NCOA4, NR2C1, TPR, RBBP8, TRPC7, FXYD1, ERNI, PRSS16, RPS3, CCL23 and SERPINE1, for the manufacture of a medicament destined to diminish the resistance to chemotherapeutic drugs in the therapeutic treatment of epithelial tumour pathologies. Also described is a method for the determination of the drug resistance in tumour cells, as well as a method for the identification of tumour stem cells.


Patent
Bionsil S.R.L. | Date: 2012-06-25

The use of compounds is described which are capable of functionally blocking at least one of the genes chosen from the group composed of EphA1, EphA2, EphA8, EphB2, CSF1R, VEGFR2, RAMP2, RAMP3, CLRN1, MAPK4, PIK3C2A, PIK3CG, GSK3alpha, GSK3beta, IRAK3, DAPK1, JAK1, PIM1, TRB3, BTG1, LATS1, LIMK2, MYLK, PAK1, PAK2, CDC2, BTK, PNRC2, NCOA4, NR2C1, TPR, RBBP8, TRPC7, FXYD1, ERNI, PRSS16, RPS3, CCL23 and SERPINE1, for the manufacture of a medicament destined to diminish the resistance to chemotherapeutic drugs in the therapeutic treatment of epithelial tumour pathologies. Also described is a method for the determination of the drug resistance in tumour cells, as well as a method for the identification of tumour stem cells.


Patent
Bionsil S.R.L. | Date: 2012-06-25

The use of compounds is described which are capable of functionally blocking at least one of the genes chosen from the group composed of EphAl, EphA2, EphA8, EphB2, CSF1R, VEGFR2, RAMP2, RAMP3, CLRN1, MAPK4, PIK3C2A, PIK3CG, GSK3alpha, GSK3beta, IRAK3, DAPK1, JAK1, PIM1, TRB3, BTG1, LATS1, LIMK2, MYLK, PAK1, PAK2, CDC2, BTK, PNRC2, NCOA4, NR2C1, TPR, RBBP8, TRPC7, FXYD1, ERNI, PRSS16, RPS3, CCL23 and SERPINE1, for the manufacture of a medicament destined to diminish the resistance to chemotherapeutic drugs in the therapeutic treatment of epithelial tumour pathologies. Also described is a method for the determination of the drug resistance in tumour cells, as well as a method for the identification of tumour stem cells.


The use of compounds is described which are capable of functionally blocking at least one of the genes chosen from the group composed of EphA1, EphA2, EphA8, EphB2, CSF1R, VEGFR2, RAMP2, RAMP3, CLRN1, MAPK4, PIK3C2A, PIK3CG, GSK3alpha, GSK3beta, IRAK3, DAPK1, JAK1, PIM1, TRB3, BTG1, LATS1, LIMK2, MYLK, PAK1, PAK2, CDC2, BTK, PNRC2, NCOA4, NR2C1, TPR, RBBP8, TRPC7, FXYD1, ERN1, PRSS16, RPS3, CCL23 and SERPINE1, for the manufacture of a medicament destined to diminish the resistance to chemotherapeutic drugs in the therapeutic treatment of epithelial tumour pathologies. Also described is a method for the determination of the drug resistance in tumour cells, as well as a method for the identification of tumour stem cells.


The use of compounds is described which are capable of functionally blocking at least one of the genes chosen from the group composed of EphA1, EphA2, EphA8, EphB2, CSF1R, VEGFR2, RAMP2, RAMP3, CLRN1, MAPK4, PIK3C2A, PIK3CG, GSK3alpha, GSK3beta, IRAK3, DAPK1, JAK1, PIM1, TRB3, BTG1, LATS1, LIMK2, MYLK, PAK1, PAK2, CDC2, BTK, PNRC2, NCOA4, NR2C1, TPR, RBBP8, TRPC7, FXYD1, ERN1, PRSS16, RPS3, CCL23 and SERPINE1, for the manufacture of a medicament destined to diminish the resistance to chemotherapeutic drugs in the therapeutic treatment of epithelial tumour pathologies. Also described is a method for the determination of the drug resistance in tumour cells, as well as a method for the identification of tumour stem cells.


Patent
Bionsil S.R.L. | Date: 2014-10-14

The use of compounds is described which are capable of functionally blocking at least one of the genes chosen from the group composed of EphAI, EphA2, EphA8, EphB2, CSF1R, VEGFR2, RAMP2, RAMP3, CLRN1, MAPK4, PIK3C2A, PIK3CG, GSK3alpha, GSK3beta, IRAK3, DAPK1, JAK1, PIM1, TRB3, BTG1, LATS1, LIMK2, MYLK, PAK1, PAK2, CDC2, BTK, PNRC2, NCOA4, NR2C1, TPR, RBBP8, TRPC7, FXYD1, ERNI, PRSS16, RPS3, CCL23 and SERPINE1, for the manufacture of a medicament destined to diminish the resistance to chemotherapeutic drugs in the therapeutic treatment of epithelial tumor pathologies. Also described is a method for the determination of the drug resistance in tumor cells, as well as a method for the identification of tumor stem cells.


The present invention describes therapies for the effective treatment of colon and colorectal carcinomas. The present invention relates to a pharmaceutical kit comprising ibrutinib and fluorouracil, for the treatment of colon and colorectal carcinomas also in the case in which such carcinomas are drug resistant and therefore allows to overcome cancer drug resistance.

Loading BiOnSil Srl collaborators
Loading BiOnSil Srl collaborators