Entity

Time filter

Source Type

Milano, Italy

Grassilli E.,University of Milan Bicocca | Grassilli E.,BiOnSil Srl | Ianzano L.,University of Milan Bicocca | Bonomo S.,University of Milan Bicocca | And 5 more authors.
PLoS ONE | Year: 2014

Glycogen Synthase Kinase-3 alpha (GSK3A) and beta (GSK3B) isoforms are encoded by distinct genes, are 98% identical within their kinase domain and perform similar functions in several settings; however, they are not completely redundant and, depending on the cell type and differentiative status, they also play unique roles. We recently identified a role for GSK3B in drug resistance by demonstrating that its inhibition enables necroptosis in response to chemotherapy in p53-null drug-resistant colon carcinoma cells. We report here that, similarly to GSK3B, also GSK3A silencing/inhibition does not affect cell proliferation or cell cycle but only abolishes growth after treatment with DNA-damaging chemotherapy. In particular, blocking GSK3A impairs DNA repair upon exposure to DNA-damaging drugs. As a consequence, p53-null cells overcome their inability to undergo apoptosis and mount a necroptotic response, characterized by absence of caspase activation and RIP1-independent, PARP-dependent AIF nuclear re-localization. We therefore conclude that GSK3A is redundant with GSK3B in regulating drug-resistance and chemotherapy-induced necroptosis and suggest that inhibition of only one isoform, or rather partial inhibition of overall cellular GSK3 activity, is enough to re-sensitize drug-resistant cells to chemotherapy. © 2014 Grassilli et al. Source


Patent
Bionsil S.R.L. | Date: 2012-06-25

The use of compounds is described which are capable of functionally blocking at least one of the genes chosen from the group composed of EphAI, EphA2, EphA8, EphB2, CSF1R, VEGFR2, RAMP2, RAMP3, CLRN1, MAPK4, PIK3C2A, PIK3CG, GSK3alpha, GSK3beta, IRAK3, DAPK1, JAK1, PIM1, TRB3, BTG1, LATS1, LIMK2, MYLK, PAK1, PAK2, CDC2, BTK, PNRC2, NCOA4, NR2C1, TPR, RBBP8, TRPC7, FXYD1, ERNI, PRSS16, RPS3, CCL23 and SERPINE1, for the manufacture of a medicament destined to diminish the resistance to chemotherapeutic drugs in the therapeutic treatment of epithelial tumour pathologies. Also described is a method for the determination of the drug resistance in tumour cells, as well as a method for the identification of tumour stem cells.


Patent
Bionsil S.R.L. | Date: 2012-06-25

The use of compounds is described which are capable of functionally blocking at least one of the genes chosen from the group composed of EphA1, EphA2, EphA8, EphB2, CSF1R, VEGFR2, RAMP2, RAMP3, CLRN1, MAPK4, PIK3C2A, PIK3CG, GSK3alpha, GSK3beta, IRAK3, DAPK1, JAK1, PIM1, TRB3, BTG1, LATS1, LIMK2, MYLK, PAK1, PAK2, CDC2, BTK, PNRC2, NCOA4, NR2C1, TPR, RBBP8, TRPC7, FXYD1, ERNI, PRSS16, RPS3, CCL23 and SERPINE1, for the manufacture of a medicament destined to diminish the resistance to chemotherapeutic drugs in the therapeutic treatment of epithelial tumour pathologies. Also described is a method for the determination of the drug resistance in tumour cells, as well as a method for the identification of tumour stem cells.


Patent
Bionsil S.R.L. | Date: 2012-06-25

The use of compounds is described which are capable of functionally blocking at least one of the genes chosen from the group composed of EphAl, EphA2, EphA8, EphB2, CSF1R, VEGFR2, RAMP2, RAMP3, CLRN1, MAPK4, PIK3C2A, PIK3CG, GSK3alpha, GSK3beta, IRAK3, DAPK1, JAK1, PIM1, TRB3, BTG1, LATS1, LIMK2, MYLK, PAK1, PAK2, CDC2, BTK, PNRC2, NCOA4, NR2C1, TPR, RBBP8, TRPC7, FXYD1, ERNI, PRSS16, RPS3, CCL23 and SERPINE1, for the manufacture of a medicament destined to diminish the resistance to chemotherapeutic drugs in the therapeutic treatment of epithelial tumour pathologies. Also described is a method for the determination of the drug resistance in tumour cells, as well as a method for the identification of tumour stem cells.


Patent
Bionsil S.R.L. | Date: 2014-10-14

The use of compounds is described which are capable of functionally blocking at least one of the genes chosen from the group composed of EphAI, EphA2, EphA8, EphB2, CSF1R, VEGFR2, RAMP2, RAMP3, CLRN1, MAPK4, PIK3C2A, PIK3CG, GSK3alpha, GSK3beta, IRAK3, DAPK1, JAK1, PIM1, TRB3, BTG1, LATS1, LIMK2, MYLK, PAK1, PAK2, CDC2, BTK, PNRC2, NCOA4, NR2C1, TPR, RBBP8, TRPC7, FXYD1, ERNI, PRSS16, RPS3, CCL23 and SERPINE1, for the manufacture of a medicament destined to diminish the resistance to chemotherapeutic drugs in the therapeutic treatment of epithelial tumor pathologies. Also described is a method for the determination of the drug resistance in tumor cells, as well as a method for the identification of tumor stem cells.

Discover hidden collaborations