Marcy-l'etoile, France
Marcy-l'etoile, France

bioMérieux is a multinational biotechnology company founded and headquartered in France. A subsidiary of Institut Mérieux, bioMérieux is listed on the NYSE Euronext Paris stock exchange. Wikipedia.


Time filter

Source Type

The present invention pertains to a method of detection, by mass spectrometry, of at least one marker of at least one mechanism of resistance to at least one antimicrobial, resistance of at least one microorganism contained in a sample, characterised in that the antimicrobial is a cephalosporin, and said resistance markers are proteins or peptides. Preferably, said proteins or peptides are proteins from said microorganism.


A method for distinguishing among a first group of microorganisms belonging to a first taxon of Gram negative bacteria, the first group of bacteria exhibiting a mechanism of resistance to a treatment; a second group of microorganisms belonging to a second taxon of Gram negative bacteria, the second taxon of bacteria being different than said first taxon, and exhibiting a mechanism of resistance to a treatment identical to the mechanism of the first group; and a third group of Gram negative bacteria that is not resistant to the treatment.


The present invention pertains to a method of detection, by mass spectrometry, of at least one marker of at least one mechanism of resistance to at least one antimicrobial, resistance of at least one microorganism contained in a sample, characterised in that the antimicrobial is a carbapenem, and said resistance markers are proteins or peptides. Preferably, said proteins or peptides are proteins from said microorganism.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: HEALTH.2013.2.3.3-1 | Award Amount: 31.38M | Year: 2014

Far from receding, the threats posed by infections with epidemic potential grow ever greater. Although Europe has amongst the best healthcare systems in the world, and also the worlds supreme researchers in this field, we lack co-ordination and linkage between networks that is required to respond fast to new threats. This consortium of consortia will streamline our response, using primary and secondary healthcare to detect cases with pandemic potential and to activate dynamic rapid investigation teams that will deploy shared resources across Europe to mitigate the impact of future pandemics on European health, infrastructure and economic integrity. If funded, PREPARE will transform Europes response to future severe epidemics or pandemics by providing infrastructure, co-ordination and integration of existing clinical research networks, both in community and hospital settings. It represents a new model of collaboration and will provide a one-stop shop for policy makers, public health agencies, regulators and funders of research into pathogens with epidemic potential. It will do this by mounting interepidemic (peace time) patient oriented clinical trials in children and in adults, investigations of the pathogenesis of relevant infectious diseases and facilitate the development of sophisticated state-of-the-art near-patient diagnostics. We will develop pre-emptive solutions to ethical, administrative, regulatory and logistical bottlenecks that prevent a rapid response in the face of new threats. We will provide education and training not only to the members of the network, but also to external opinion leaders, funders and policy makers thereby streamlining our future response. By strengthening and integrating interepidemic research networks, PREPARE will enable the rapid coordinated deployment of Europes elite clinical investigators, resulting in a highly effective response to future outbreaks based on solid scientific advances.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-24-2015 | Award Amount: 18.47M | Year: 2016

The management of febrile patients is one of the most common and important problems facing healthcare providers. Distinction between bacterial infections and trivial viral infection on clinical grounds is unreliable, and as a result innumerable patients worldwide undergo hospitalization, invasive investigation and are treated with antibiotics for presumed bacterial infection when, in fact, they are suffering from self-resolving viral infection. We aim to improve diagnosis and management of febrile patients, by application of sophisticated phenotypic, transcriptomic (genomic, proteomic) and bioinformatic approaches to well characterised large-scale, multi-national patient cohorts already recruited with EU funding. We will identify, and validate promising new discriminators of bacterial and viral infection including transcriptomic and clinical phenotypic markers. The most accurate markers distinguishing bacterial and viral infection will be evaluated in prospective cohorts of patients reflecting the different health care settings across European countries. By linking sophisticated new genomic and proteomic approaches to careful clinical phenotyping, and building on pilot data from our previous studies we will develop a comprehensive management plan for febrile patients which can be rolled out in healthcare systems across Europe.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.86M | Year: 2016

Infectious diseases are a major burden to public health and the global economy, not in the least due to antimicrobial resistance. Rapid point of care (POC) in vitro diagnostics (IVD) are key tools in the effective clinical management of patients with infectious diseases. Yet there is still a large unmet clinical need for more rapid POC IVDs generating more clinically relevant, actionable information. Effectively addressing this need requires a change in the current approach in training researchers on IVDs, generating a new breed of IVD researchers capable of closing the gap between the clinical and technological perspective. ND4ID takes up this challenge by offering 15 ESRs a world-class first of its kind training programme where they will be exposed to the full breadth of disciplines spanning clinical, technological and market-oriented viewpoints, from both the academic and non-academic sector. Through a set of synergistic research projects on novel POC assays, targeting the most important and urgent clinical needs at world leading academic or private sector research groups, the ESRs are offered a holistic training program, preparing them to be lead players in the future IVD field. This training through research is augmented by a unique comprehensive network-wide training programme covering clinical, technical and translational knowledge and skills of relevance to IVD research, development and exploitation. As such, ND4ID will deliver ESRs that will be in high demand serving as an example for other academic and non-academic actors active in training IVD researchers and further strengthening Europes position in the internally competitive arena of IVD technology.


A detector arrangement is disclosed for a blood culture bottle incorporating a colorimetric sensor which is subject to change of color due to change in pH or CO_(2 )of a sample medium within the blood culture bottle. The detector arrangement includes a sensor LED illuminating the colorimetric sensor, a reference LED illuminating the colorimetric sensor, a control circuit for selectively and alternately activating the sensor LED and the reference LED, and a photodetector. The photodetector measures reflectance from the colorimetric sensor during the selective and alternating illumination of the colorimetric sensor with the sensor LED and the reference LED and generates intensity signals. The reference LED is selected to have a peak wavelength of illumination such that the intensity signals of the photodetector from illumination by the reference LED are not substantially affected by changes in the color of the colorimetric sensor.


This assembly includes: a transportable support; a strip attached to the support and including an application area for applying the sample and at least one reagent required for the analysis; a piercing member for piercing the skin and a blood vessel; and a container for collecting, storing and returning the sample of human or animal blood. The piercing member is inserted into the container. The tip is connected to the support. The container is connected to the support in a removable manner between a storage configuration and a use configuration, in which the container is placed close to the application area.


Methods, systems, computer program products, apparatus and circuits are configured to detect fallen containers upstream or proximate an intake zone suitable for automated evaluation apparatus using different sensors, including at least one lower sensor and at least one upper sensor which is positioned to project an optical signal at a height corresponding to a top portion of an upright container to thereby allow an increased reliability in detection of different orientations and positions of fallen containers. An optional second lower sensor may be used which is longitudinally spaced apart from the first lower sensor and the lower sensors can transmit optical signals across the container travel path that do not intersect.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.90M | Year: 2016

ESA-ITN will break through the state of the art in sepsis diagnostics and will train 15 early-stage researchers (ESRs) to determine the clinical potency of a variety of new complementary sepsis biomarkers. These cover the full range of the antiinflammatory response in sepsis, at genetic, molecular and cellular level. Rapid and practical biomarker diagnostics for sepsis will be developed by building on some of the worlds most innovative diagnostic platforms. In addition, a whole new clinical research model that incorporates use of biomarker diagnostics will be designed and tested. All 15 interlinked ESR projects have an interdisciplinary component (intersection of sepsis research, product development, economics and medical practice) and international (representing 10 countries) and industry collaborations (incorporating 3 diagnostics firms, 1 bioinformatics company and a business school). Interactions within the network are strengthened by meaningful secondments, which take place at private beneficiary or partner institutes. The training programme covers: 1. Specialist training in an international, interdisciplinary and intersectorial sepsis-orientated research project; 2. Advanced technology training in pathogenesis, biomarker discovery, diagnostics, trial design and innovation management; 3. Professional training in transferable skills, including the special ESA-ITN mini-MBA. The setup of ESA-ITN is unique as it reflects the entire innovation value chain for sepsis biomarker diagnostics. ESA-ITN is composed of leading institutes in sepsis research and a selection of Europes top biomarker diagnostics companies. Links to various global networks and shared research infrastructures in the field of sepsis further leverage the proposition of ESA-ITN.

Loading bioMerieux collaborators
Loading bioMerieux collaborators