Entity

Time filter

Source Type


Fotovati A.,University of British Columbia | Fotovati A.,Laboratory of Biomedical Research | Abu-Ali S.,Laboratory of Biomedical Research | Sugita Y.,Kurume University | Nakamura Y.,St Marys Hospital
Journal of Clinical Neuroscience | Year: 2011

N-myc downstream regulated gene 1 (NDRG1), also known as Cap43, Drg-1, and rit42, is expressed in various normal tissues and cancers, in which it is often associated with a favorable prognosis. It also plays a critical role in central nervous system development, with NDRG1 deficiency resulting in neural defects in mice. Central neurocytoma (CN) is a relatively rare tumor of the neurocytes in the brain, which occurs mainly in young adults. In the present study, we found that tissue samples from four patients with CN had both nuclear and cytoplasmic/membranous expression of NDRG1 protein in highly differentiated CN tumor cells. NDRG1 was also expressed in intratumoral microvessels. Immunohistochemical study of serial sections from the same patients revealed a marked association between the expression pattern of NDRG1 and that of neuron-specific enolase, a tumor differentiation marker. The data presented in this study suggest that NDRG1 could be considered a potential differentiation marker for CN. © 2011 Elsevier Masson SAS. All rights reserved.


Fotovati A.,Kurume University | Fotovati A.,University of British Columbia | Fotovati A.,Laboratory of Biomedical Research | Abu-Ali S.,Laboratory of Biomedical Research | And 4 more authors.
Pathology and Oncology Research | Year: 2011

N-myc downstream-regulated gene 1 (NDRG1), also called differentiation- related gene-1 (Drg1) and Cap43, is expressed in various normal tissues and suppressed in several malignancies. In this study, whether NDRG1 expression was correlated with differentiation of human breast cancer cells has been investigated. Endogenous expression level of NDRG1 was closely correlated with differentiation status of breast cancer cell lines. Furthermore, sodium butyrate (NaB), an inducer of cellular differentiation, increased the expression of β-casein, a milk-related differentiation marker, together with up-regulation of NDRG1 in breast cancer cells. In contrast, inhibition of NDRG1 by its siRNA resulted in reduced accumulation of β-casein. Immunohistochemical analysis showed co-expression of NDRG1 and β-casein or milk fat protein (MFP), another differentiation marker of breast tissue, in the mouse xenograft model of breast cancer. Furthermore, overexpression of NDRG1 expanded the differentiated area in the xenograft model of breast cancer. In human breast cancer, using samples from 45 patients, we also showed close relationship between NDRG1 and β-casein or MFP expression. Altogether, in vitro and in vivo data demonstrated a possible role of NDRG1 in differentiation of breast cancer. We concluded that NDRG1 could be used as a biomarker for differentiation of breast cancer for both diagnostic and therapeutic purposes. © 2011 Arányi Lajos Foundation.


Fotovati A.,Kyushu University | Fotovati A.,Laboratory of Biomedical Research | Fotovati A.,Japan Science and Technology Agency | Fotovati A.,University of British Columbia | And 5 more authors.
Journal of Anatomy | Year: 2011

p27 is a major negative regulator of somatic cellular proliferation, and its down-regulation has been shown to be associated with cancer development. Targeted disruption ofp27 results in complete loss of fertility in female mice, suggesting that it plays a significant role in the development of female gametes and the surrounding environment. We have now investigated the effect of loss of Skp2, an F-box protein that mediates ubiquitin-dependent degradation of p27, on female gamete production. The female Skp2-deficient mice showed accumulation of p27 in the ovary and severely compromised gamete development from the embryonic stage to follicular growth in the adult ovary, eventually leading to a decreased functional gamete reserve. Additional deletion of p27 resulted in relatively normal ovarian folliculogenesis, suggesting that accumulating p27 is primarily responsible for the compromised ovarian development. Embryonic ovaries of Skp2-/- mice manifested massive apoptosis as evidenced by cleavage of pro-caspase 3 and poly(ADP-ribose) polymerase-1. This in turn resulted in a significant decrease in the remaining pool of functional gametes in Skp2-/- mice shortly after sexual maturity and premature ovarian failure. The increased apoptosis seemed to be attributable to the polyploidy of granulosa cells. These results suggest that proper progression of the cell cycle, regulated by the p27-Skp2 axis, is pivotal for the maintenance of fertility, and that defects in this system may underlie the pathogenesis of abnormal gamete production and premature ovarian failure during the reproductive life of women. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.

Discover hidden collaborations