Entity

Time filter

Source Type


Iacono D.,Johns Hopkins University | Iacono D.,Biomedical Research Institute of New Jersey | Resnick S.M.,U.S. National Institute on Aging | O'Brien R.,Johns Hopkins University | And 6 more authors.
Journal of Neuropathology and Experimental Neurology | Year: 2014

Older adults with intact cognition before death and substantial Alzheimer disease (AD) lesions at autopsy have been termed "asymptomatic AD subjects" (ASYMAD). We previously reported hypertrophy of neuronal cell bodies, nuclei, and nucleoli in the CA1 of the hippocampus (CA1), anterior cingulate gyrus, posterior cingulate gyrus, and primary visual cortex of ASYMAD versus age-matched Control and mild cognitive impairment (MCI) subjects. However, it was unclear whether the neuronal hypertrophy could be attributed to differences in the severity of AD pathology. Here, we performed quantitative analyses of the severity of β-amyloid (Aβ) and phosphorylated tau (tau) loads in the brains of ASYMAD, Control, MCI, and AD subjects (n = 15 per group) from the Baltimore Longitudinal Study of Aging. Tissue sections from CA1, anterior cingulate gyrus, posterior cingulate gyrus, and primary visual cortex were immunostained for Aβ and tau; the respective loads were assessed using unbiased stereology by measuring the fractional areas of immunoreactivity for each protein in each region. The ASYMAD and MCI groups did not differ in Aβ and tau loads. These data confirm that ASYMAD and MCI subjects have comparable loads of insoluble Aβ and tau in regions vulnerable to AD pathology despite divergent cognitive outcomes. These findings imply that cognitive impairment in AD may be caused or modulated by factors other than insoluble forms of Aβ and tau. © 2014 by the American Association of Neuropathologists, Inc. Source


Pappolla M.,University of Texas Medical Branch | Sambamurti K.,Medical University of South Carolina | Vidal R.,Indiana University | Pacheco-Quinto J.,Biomedical Research Institute of New Jersey | And 2 more authors.
Neurobiology of Disease | Year: 2014

Evidence has shown that lymphatic drainage contributes to removal of debris from the brain but its role in the accumulation of amyloid β peptides (Aβ) has not been demonstrated. We examined the levels of various forms of Aβ in the brain, plasma and lymph nodes in a transgenic model of Alzheimer's disease (AD) at different ages. Herein, we report on the novel finding that Aβ is present in the cervical and axillary lymph nodes of AD transgenic mice and that Aβ levels in lymph nodes increase over time, mirroring the increase of Aβ levels observed in the brain. Aβ levels in lymph nodes were significantly higher than in plasma. At age 15.5. months, there was a significant increase of monomeric soluble Aβ40 (p= 0.003) and Aβ42 (p= 0.05) in the lymph nodes over the baseline values measured at 6. months of age. In contrast, plasma levels of Aβ40 showed no significant changes (p= 0.68) and plasma levels Aβ42 significantly dropped (p= 0.02) at the same age. Aβ concentration was low to undetectable in splenic lymphoid tissue and several other control tissues including heart, lung, liver, kidneys and intestine of the same animals, strongly suggesting that Aβ peptides in lymph nodes are derived from the brain. © 2014 Elsevier Inc. Source


Iacono D.,Karolinska Institutet | Iacono D.,Biomedical Research Institute of New Jersey | Volkman I.,Karolinska Institutet | Nennesmo I.,Karolinska Institutet | And 8 more authors.
Brain Pathology | Year: 2014

Twin studies are an incomparable source of investigation to shed light on genetic and non-genetic components of neurodegenerative diseases, as Alzheimer's disease (AD). Detailed clinicopathologic correlations using twin longitudinal data and post-mortem examinations are mostly missing. We describe clinical and pathologic findings of seven monozygotic (MZ) and dizygotic (DZ) twin pairs. Our findings show good agreement between clinical and pathologic diagnoses in the majority of the twin pairs, with greater neuropathologic concordance in MZ than DZ twins. Greater neuropathologic concordance was found for β-amyloid than tau pathology within the pairs. ApoE4 was associated with higher β-amyloid and earlier dementia onset, and importantly, higher frequency of other co-occurring brain pathologies, regardless of the zygosity. Dementia onset, dementia duration, difference between twins in age at dementia onset and at death, did not correlate with AD pathology. These clinicopathologic correlations of older identical and fraternal twins support the relevance of genetic factors in AD, but not their sufficiency to determine the pathology, and consequently the disease, even in monozygotic twins. It is the interaction among genetic and non-genetic risks which plays a major role in influencing, or probably determining, the degeneration of those brain circuits associated with pathology and cognitive deficits in AD. © 2014 International Society of Neuropathology. Source


Iacono D.,Biomedical Research Institute of New Jersey | Iacono D.,Johns Hopkins University | Ferrari S.,University of Verona | Gelati M.,University of Verona | And 3 more authors.
BioMed Research International | Year: 2015

Sporadic Creutzfeldt-Jakob disease (sCJD), the most frequent human prion disorder, is characterized by remarkable phenotypic variability, which is influenced by the conformation of the pathologic prion protein and the methionine/valine polymorphic codon 129 of the prion protein gene. While the etiology of sCJD remains unknown, it has been hypothesized that environmental exposure to prions might occur through conjunctival/mucosal contact, oral ingestion, inhalation, or simultaneous involvement of the olfactory and enteric systems. We studied 21 subjects with definite sCJD to assess neuropathological involvement of the dorsal motor nucleus of the vagus and other medullary nuclei and to evaluate possible associations with codon 129 genotype and prion protein conformation. The present data show that prion protein deposition was detected in medullary nuclei of distinct sCJD subtypes, either valine homozygous or heterozygous at codon 129. These findings suggest that an "environmental exposure" might occur, supporting the hypothesis that external sources of contamination could contribute to sCJD in susceptible hosts. Furthermore, these novel data could shed the light on possible causes of sCJD through a "triple match" hypothesis that identify environmental exposure, host genotype, and direct exposure of specific anatomical regions as possible pathogenetic factors. Copyright © 2015 Diego Iacono et al. Source


Iacono D.,Johns Hopkins University | Iacono D.,Biomedical Research Institute of New Jersey | Iacono D.,Atlantic Neuroscience Institute | Zandi P.,Johns Hopkins University | And 5 more authors.
Oncotarget | Year: 2015

Asymptomatic Alzheimer's disease (ASYMAD) subjects are individuals characterized by preserved cognition before death despite substantial AD pathology at autopsy. ASYMAD subjects show comparable levels of AD pathology, i.e. β-amyloid neuritic plaques (Aβ-NP) and tau-neurofibrillary tangles (NFT), to those observed in mild cognitive impairment (MCI) and some definite AD cases. Previous clinicopathologic studies on ASYMAD subjects have shown specific phenomena of hypertrophy in the cell bodies, nuclei, and nucleoli of hippocampal pyramidal neurons and other cerebral areas. Since it is well established that the allele APOε4 is a major genetic risk factor for AD, we examined whether specific alleles of APOE could be associated with the different clinical outcomes between ASYMAD and MCI subjects despite equivalent AD pathology. A total of 523 brains from the Nun Study were screened for this investigation. The results showed higher APOε2 frequency (p < 0.001) in ASYMAD (19.2%) vs. MCI (0%) and vs. AD (4.7%). Furthermore, higher education in ASYMAD vs. MCI and AD (p < 0.05) was found. These novel autopsy-verified findings support the hypothesis of the beneficial effect of APOε2 and education, both which seem to act as contributing factors in delaying or forestalling the clinical manifestations of AD despite consistent levels of AD pathology. Source

Discover hidden collaborations