Time filter

Source Type

Martinez L.,Institute of Biomedical Research of Barcelona IIBB | Martinez L.,Hospital Clinic I Provincial Of Barcelona | Torres S.,Institute of Biomedical Research of Barcelona IIBB | Torres S.,Hospital Clinic I Provincial Of Barcelona | And 14 more authors.
Oncotarget | Year: 2015

Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy.


PubMed | Institute Dinvestigacions Quimiques I Ambientals Of Barcelona, Hospital Clinic I Provincial Of Barcelona and Institute of Biomedical Research of Barcelona IIBB
Type: Journal Article | Journal: Oncotarget | Year: 2015

Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy.


Serra-Perez A.,Institute of Biomedical Research of Barcelona IIBB | Planas A.M.,Institute of Biomedical Research of Barcelona IIBB | Nunez-O'Mara A.,Cell Biology and Stem Cells Unit | Berra E.,Cell Biology and Stem Cells Unit | And 3 more authors.
Journal of Biological Chemistry | Year: 2010

Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor that activates the cellular response to hypoxia. The HIF1α subunit is constantly synthesized and degraded under normoxia, but degradation is rapidly inhibited when oxygen levels drop. Oxygen-dependent hydroxylation by prolyl-4-hydroxylases (PHD) mediates HIF1α proteasome degradation. Brain ischemia limits the availability not only of oxygen but also of glucose. We hypothesized that this circumstance could have a modulating effect on HIF. We assessed the separate involvement of oxygen and glucose in HIF1α regulation in differentiated neuroblastoma cells subjected to ischemia. We report higher transcriptional activity and HIF1α expression under oxygen deprivation in the presence of glucose (OD), than in its absence (oxygen and glucose deprivation, OGD). Unexpectedly, HIF1α was not degraded at reoxygenation after an episode of OGD. This was not due to impairment of proteasome function, but was associated with lower HIF1α hydroxylation. Krebs cycle metabolites fumarate and succinate are known inhibitors of PHD, while α-ketoglutarate is a co-substrate of the reaction. Lack of HIF1α degradation in the presence of oxygen was accompanied by a very low α-ketoglutarate/fumarate ratio. Furthermore, treatment with a fumarate analogue prevented HIF1α degradation under normoxia. In all, our data suggest that postischemic metabolic alterations in Krebs cycle metabolites impair HIF1α degradation in the presence of oxygen by decreasing its hydroxylation, and highlight the involvement of metabolic pathways in HIF1α regulation besides the well known effects of oxygen. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.


Bejaoui M.,Institute of Biomedical Research of Barcelona IIBB | Pantazi E.,Institute of Biomedical Research of Barcelona IIBB | Calvo M.,University of Barcelona | Folch-Puy E.,Institute of Biomedical Research of Barcelona IIBB | And 6 more authors.
Oxidative Medicine and Cellular Longevity | Year: 2016

Hepatic ischemia reperfusion injury (IRI) is an inevitable clinical problem for liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proven their effectiveness in various in vivo and in vitro models of tissue injury. The present study aims to investigate whether the intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) could be an effective strategy for rat liver preconditioning against IRI. PEG 35 was intravenously administered at 2 and 10 mg/kg to male Sprague Dawley rats. Then, rats were subjected to one hour of partial ischemia (70%) followed by two hours of reperfusion. The results demonstrated that PEG 35 injected intravenously at 10 mg/kg protected efficiently rat liver against the deleterious effects of IRI. This was evidenced by the significant decrease in transaminases levels and the better preservation of mitochondrial membrane polarization. Also, PEG 35 preserved hepatocyte morphology as reflected by an increased F-actin/G-actin ratio and confocal microscopy findings. In addition, PEG 35 protective mechanisms were correlated with the activation of the prosurvival kinase Akt and the cytoprotective factor AMPK and the inhibition of apoptosis. Thus, PEG may become a suitable agent to attempt pharmacological preconditioning against hepatic IRI. Copyright © 2016 Mohamed Bejaoui et al.


PubMed | University of Padua, University of Barcelona, University Paris - Sud, Institute of Biomedical Research of Barcelona IIBB and Platform of Laboratory Animal Applied Research
Type: | Journal: Oxidative medicine and cellular longevity | Year: 2016

Hepatic ischemia reperfusion injury (IRI) is an inevitable clinical problem for liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proven their effectiveness in various in vivo and in vitro models of tissue injury. The present study aims to investigate whether the intravenous administration of a high molecular weight PEG of 35kDa (PEG 35) could be an effective strategy for rat liver preconditioning against IRI. PEG 35 was intravenously administered at 2 and 10mg/kg to male Sprague Dawley rats. Then, rats were subjected to one hour of partial ischemia (70%) followed by two hours of reperfusion. The results demonstrated that PEG 35 injected intravenously at 10mg/kg protected efficiently rat liver against the deleterious effects of IRI. This was evidenced by the significant decrease in transaminases levels and the better preservation of mitochondrial membrane polarization. Also, PEG 35 preserved hepatocyte morphology as reflected by an increased F-actin/G-actin ratio and confocal microscopy findings. In addition, PEG 35 protective mechanisms were correlated with the activation of the prosurvival kinase Akt and the cytoprotective factor AMPK and the inhibition of apoptosis. Thus, PEG may become a suitable agent to attempt pharmacological preconditioning against hepatic IRI.


Garcia-Ruiz C.,Institute of Biomedical Research of Barcelona IIBB | Baulies A.,Institute of Biomedical Research of Barcelona IIBB | Mari M.,Institute of Biomedical Research of Barcelona IIBB | Garcia-Roves P.M.,Hospital Clinic Of Barcelona | And 2 more authors.
Free Radical Research | Year: 2013

Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of the metabolic syndrome and refers to a spectrum of disorders ranging from steatosis to steatohepatitis, a disease stage characterized by inflammation, fibrosis, cell death and insulin resistance (IR). Due to its association with obesity and IR the impact of NAFLD is growing worldwide. Consistent with the role of mitochondria in fatty acid (FA) metabolism, impaired mitochondrial function is thought to contribute to NAFLD and IR. Indeed, mitochondrial dysfunction and impaired mitochondrial respiratory chain have been described in patients with non-alcoholic steatohepatitis and skeletal muscle of obese patients. However, recent data have provided evidence that pharmacological and genetic models of mitochondrial impairment with reduced electron transport stimulate insulin sensitivity and protect against diet-induced obesity, hepatosteatosis and IR. These beneficial metabolic effects of impaired mitochondrial oxidative phosphorylation may be related not only to the reduction of reactive oxygen species production that regulate insulin signaling but also to decreased mitochondrial FA overload that generate specific metabolites derived from incomplete FA oxidation (FAO) in the TCA cycle. In line with the Randle cycle, reduced mitochondrial FAO rates may alleviate the repression on glucose metabolism in obesity. In addition, the redox paradox in insulin signaling and the delicate mitochondrial antioxidant balance in steatohepatitis add another level of complexity to the role of mitochondria in NAFLD and IR. Thus, better understanding the role of mitochondria in FA metabolism and glucose homeostasis may provide novel strategies for the treatment of NAFLD and IR. © 2013 Informa UK, Ltd.


Gimenez-Llort L.,Autonomous University of Barcelona | Garcia Y.,Institute of Biomedical Research of Barcelona IIBB | Buccieri K.,Autonomous University of Barcelona | Revilla S.,Institute of Biomedical Research of Barcelona IIBB | And 3 more authors.
International Journal of Alzheimer's Disease | Year: 2010

The 3xTg-AD mouse develops a progressive Alzheimer's disease- (AD-) like brain pathology that causes cognitive- and neuropsychiatric-like symptoms of dementia. Since its neuroimmunoendocrine axis is likewise impaired, this mouse is also useful for modelling complex age-related neurodegeneration. This study analyzed behavioral, physiological, neurochemical, pathological and immunoendocrine alterations in male and female 3xTg-AD mice and assayed the effects of a short therapy of forced physical exercise at the moderate pathology stage of 6 months of age. Gender effects were observed in most AD-related pathology and dysfunctions. Five weeks of treadmill training produced beneficial effects, such as the reduction of brain oxidative stress and GABA-A receptor dysfunction in males and improvement of sensorimotor function in females. In both sexes, exercise decreased the brain amyloid β42/40 ratio levels. The results highlight the importance of analyzing experimental therapies in both mouse model genders in order to improve our understanding of the disease and develop more appropriate therapies. Copyright © 2010 Lydia Gimnez-Llort et al.


PubMed | Institute of Biomedical Research of Barcelona IIBB
Type: Comparative Study | Journal: Neurobiology of aging | Year: 2012

Alzheimers disease (AD) is a devastating age-related neurodegenerative disease with no specific treatment at present. Several healthy lifestyle options and over-the-counter drugs that it has been suggested delay the onset of the disease are in an experimental phase, but it is unclear whether they will have any therapeutic value against AD. We assayed physical exercise and melatonin in 3xTg-AD male mice aged from 6 to 12 months, therefore from moderate to advanced phases of AD pathology. Analysis of behavior and brain tissue at termination showed differential patterns of neuroprotection for the 2 treatments. Both treatments decreased soluble amyloid oligomers, whereas only melatonin decreased hyperphosphorylated tau. Melatonin was effective against the immunosenescence that 3xTg-AD mice present. Voluntary physical exercise protected against behavioral and psychological symptoms of dementia such as anxiety, a lack of exploration, and emotionality. Both treatments protected against cognitive impairment, brain oxidative stress, and a decrease in mitochondrial DNA (mtDNA). Interestingly, only the combined treatment of physical exercise plus melatonin was effective against the decrease of mitochondrial complexes. Therefore, melatonin plus physical exercise may exert complementary, additive, or even synergistic effects against a range of disturbances present in AD.


PubMed | Institute of Biomedical Research of Barcelona IIBB
Type: Journal Article | Journal: Journal of Alzheimer's disease : JAD | Year: 2011

Physical exercise is considered to exert a positive neurophysiological effect that helps to maintain normal brain activity in the elderly. Expectations that it could help to fight Alzheimers disease (AD) were recently raised. This study analyzed the effects of different patterns of physical exercise on the 3xTg-AD mouse. Male and female 3xTg-AD mice at an early pathological stage (4-month-old) have had free access to a running wheel for 1 month, whereas mice at a moderate pathological stage(7-month-old) have had access either during 1 or 6 months. The non-transgenic mouse strain was used as a control. Parallel animal groups were housed in conventional conditions. Cognitive loss and behavioral and psychological symptoms of dementia (BPSD)-like behaviors were present in the 3xTg-AD mice along with alteration in synaptic function and ong-term potentiation impairment in vivo. Brain tissue showed AD-pathology and oxidative-related changes. Disturbances were more severe at the older age tested. Oxidative stress was higher in males but other changes were similar or higher in females. Exercise treatment ameliorated cognitive deterioration and BPSD-like behaviors such as anxiety and the startle response. Synaptic changes were partially protected by exercise. Oxidative stress was reduced. The best neuroprotection was generally obtained after 6 months of exercise in 7-month-old 3xTg-AD mice. Improved sensorimotor function and brain tissue antioxidant defence were induced in both 3xTg-AD and NonTg mice. Therefore, the benefits of aerobic physical exercise on synapse, redox homeostasis, and general brain function demonstrated in the 3xTg-AD mouse further support the value of this healthy life-style against neurodegeneration.

Loading Institute of Biomedical Research of Barcelona IIBB collaborators
Loading Institute of Biomedical Research of Barcelona IIBB collaborators