Biomedical Research Institute INCLIVA

Valencia, Spain

Biomedical Research Institute INCLIVA

Valencia, Spain
SEARCH FILTERS
Time filter
Source Type

Calap-Quintana P.,University of Valencia | Gonzalez-Fernandez J.,University of Valencia | Gonzalez-Fernandez J.,Biomedical Research Institute INCLIVA | Sebastia-Ortega N.,University of Valencia | And 5 more authors.
International Journal of Molecular Sciences | Year: 2017

Iron, copper and zinc are transition metals essential for life because they are required in a multitude of biological processes. Organisms have evolved to acquire metals from nutrition and to maintain adequate levels of each metal to avoid damaging effects associated with its deficiency, excess or misplacement. Interestingly, the main components of metal homeostatic pathways are conserved, with many orthologues of the human metal-related genes having been identified and characterized in Drosophila melanogaster. Drosophila has gained appreciation as a useful model for studying human diseases, including those caused by mutations in pathways controlling cellular metal homeostasis. Flies have many advantages in the laboratory, such as a short life cycle, easy handling and inexpensive maintenance. Furthermore, they can be raised in a large number. In addition, flies are greatly appreciated because they offer a considerable number of genetic tools to address some of the unresolved questions concerning disease pathology, which in turn could contribute to our understanding of the metal metabolism and homeostasis. This review recapitulates the metabolism of the principal transition metals, namely iron, zinc and copper, in Drosophila and the utility of this organism as an experimental model to explore the role of metal dyshomeostasis in different human diseases. Finally, a summary of the contribution of Drosophila as a model for testing metal toxicity is provided. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.


Manguan-Garcia C.,Institute Investigaciones Biomedicas CSIC UAM | Manguan-Garcia C.,CIBER ISCIII | Pintado-Berninches L.,Institute Investigaciones Biomedicas CSIC UAM | Carrillo J.,Institute Investigaciones Biomedicas CSIC UAM | And 18 more authors.
PLoS ONE | Year: 2014

The predominant X-linked form of Dyskeratosis congenita results from mutations in DKC1, which encodes dyskerin, a protein required for ribosomal RNA modification that is also a component of the telomerase complex. We have previously found that expression of an internal fragment of dyskerin (GSE24.2) rescues telomerase activity in X-linked dyskeratosis congenita (X-DC) patient cells. Here we have found that an increased basal and induced DNA damage response occurred in X-DC cells in comparison with normal cells. DNA damage that is also localized in telomeres results in increased heterochromatin formation and senescence. Expression of a cDNA coding for GSE24.2 rescues both global and telomeric DNA damage. Furthermore, transfection of bacterial purified or a chemically synthesized GSE24.2 peptide is able to rescue basal DNA damage in X-DC cells. We have also observed an increase in oxidative stress in X-DC cells and expression of GSE24.2 was able to diminish it. Altogether our data indicated that supplying GSE24.2, either from a cDNA vector or as a peptide reduces the pathogenic effects of Dkc1 mutations and suggests a novel therapeutic approach. © 2014 Manguan-Garcia et al.


Ibarrola-Villava M.,Biomedical Research Institute INCLIVA | Kumar R.,German Cancer Research Center | Nagore E.,Instituto Valenciano Of Oncologia | Benfodda M.,University Paris Diderot | And 16 more authors.
International Journal of Cancer | Year: 2015

Multifactorial predisposition to melanoma includes genes involved in pigmentation, immunity and DNA repair. Nonetheless, missing heritability in melanoma is still important. We studied the role of 335 candidate SNPs in melanoma susceptibility by using a dedicated chip and investigating 110 genes involved in different pathways. A discovery set was comprised of 1069 melanoma patients and 925 controls from France. Data were replicated using validation phases II (1085 cases and 801 controls from Spain) and III (1808 cases and 1894 controls from Germany and a second set of Spanish samples). In addition, an exome sequencing study was performed in three high-risk French melanoma families. Nineteen SNPs in 17 genes were initially associated with melanoma in the French population. Six SNPs were replicated in phase II, including two new SNPs in the WNT3 (rs199524) and VPS41 (rs11773094) genes. The role of VPS41 and WNT3 was confirmed in a meta-analysis (3940 melanoma cases and 3620 controls) with two-side p values of 0.002, (OR50.86) and 4.07310-10 (OR50.80), respectively. Exome sequencing revealed a non-synonymous VPS41 variant in one family that was shown to be strongly associated with familial melanoma (OR54.46, p=0.001) in an independent sample of 178 melanoma families. WNT3 belongs to WNT pathway known to play a crucial role in melanoma, whereas VPS41 regulates vesicular trafficking and is thought to play a role in pigmentation. Our work identified two new pathways involved in melanoma predisposition. These results may be useful in the future for identifying individuals highly predisposed to melanoma. © 2014 UICC.


Ibarrola-Villava M.,Biomedical Research Institute INCLIVA | Fleitas T.,Biomedical Research Institute INCLIVA | Llorca-Cardenosa M.J.,Biomedical Research Institute INCLIVA | Mongort C.,Biomedical Research Institute INCLIVA | And 10 more authors.
Oncotarget | Year: 2016

Somatic mutation analysis represents a useful tool in selecting personalized therapy. The aim of our study was to determine the presence of common genetic events affecting actionable oncogenes using a MassARRAY technology in patients with advanced solid tumors who were potential candidates for target-based therapies. The analysis of 238 mutations across 19 oncogenes was performed in 197 formalin-fixed paraffin-embedded samples of different tumors using the OncoCarta Panel v1.0 (Sequenom Hamburg, Germany). Of the 197 specimens, 97 (49.2%) presented at least one mutation. Forty-nine different oncogenic mutations in 16 genes were detected. Mutations in KRAS and PIK3CA were detected in 40/97 (41.2%) and 30/97 (30.9%) patients respectively. Thirty-one patients (32.0%) had mutations in two genes, 20 of them (64.5%) initially diagnosed with colorectal cancer. The co-occurrence of mutation involved mainly KRAS, PIK3CA, KIT and RET. Mutation profiles were validated using a customized panel and the Junior Next-Generation Sequencing technology (GS-Junior 454, Roche). Twenty-eight patients participated in early clinical trials or received specific treatments according to the molecular characterization (28.0%). MassARRAY technology is a rapid and effective method for identifying key cancer-driving mutations across a large number of samples, which allows for a more appropriate selection for personalized therapies.


Cabello P.,Biomedical Research Institute INCLIVA | Pineda B.,Biomedical Research Institute INCLIVA | Tormo E.,Biomedical Research Institute INCLIVA | Lluch A.,Biomedical Research Institute INCLIVA | And 2 more authors.
International Journal of Molecular Sciences | Year: 2016

Metformin, a drug approved for diabetes type II treatment, has been associated with a reduction in the incidence of breast cancer and metastasis and increased survival in diabetic breast cancer patients. High levels of miR-26a expression have been proposed as one of the possible mechanisms for this effect; likewise, this miRNA has also been associated with survival/apoptosis processes in breast cancer. Our aim was to evaluate if miR-26a and some of its targets could mediate the effect of metformin in breast cancer. The viability of MDA-MB-231, MDA-MB-468, and MCF-7 breast cancer cell lines was evaluated with an MTT assay after ectopic overexpression and/or downregulation of miR-26a. Similarly, the expression levels of the miR-26a targets CASP3, CCNE2, ABL2, APAF1, XIAP, BCL-2, PTEN, p53, E2F3, CDC25A, BCL2L1, MCL-1, EZH2, and MTDH were assessed by quantitative polymerase chain reaction (PCR). The effect of metformin treatment on breast cancer cell viability and miR-26a, BCL-2, PTEN, MCL-1, EZH2, and MTDH modulation were evaluated. Wound healing experiments were performed to analyze the effect of miR-26a and metformin treatment on cell migration. MiR-26a overexpression resulted in a reduction in cell viability that was partially recovered by inhibiting it. E2F3, MCL-1, EZH2, MTDH, and PTEN were downregulated by miR-26a and the PTEN (phosphatase and tensin homolog) protein was also reduced after miR-26a overexpression. Metformin treatment reduced breast cancer cell viability, increased miR-26a expression, and led to a reduction in BCL-2, EZH2, and PTEN expression. miR-26a inhibition partly prevents the metformin viability effect and the PTEN and EZH2 expression reduction. Our results indicate that metformin effectively reduces breast cancer cell viability and suggests that the effects of the drug are mediated by an increase in miR-26a expression and a reduction of its targets, PTEN and EHZ2 Thus, the use of metformin in breast cancer treatment constitutes a promising potential breast cancer therapy. © 2016 by the authors; licensee MDPI, Basel, Switzerland.


Fores-Martos J.,Biomedical Research Institute INCLIVA | Cervera-Vidal R.,Biomedical Research Institute INCLIVA | Chirivella E.,Biomedical Research Institute INCLIVA | Ramos-Jarero A.,Biomedical Research Institute INCLIVA | Climent J.,Biomedical Research Institute INCLIVA
Frontiers in Physiology | Year: 2015

Down syndrome (DS), one of the most common birth defects and the most widespread genetic cause of intellectual disabilities, is caused by extra genetic material on chromosome 21 (HSA21). The increased genomic dosage of trisomy 21 is thought to be responsible for the distinct DS phenotypes, including an increased risk of developing some types of childhood leukemia and germ cell tumors. Patients with DS, however, have a strikingly lower incidence of many other solid tumors. We hypothesized that the third copy of genes located in HSA21 may have an important role on the protective effect that DS patients show against most types of solid tumors. Focusing on Copy Number Variation (CNV) array data, we have generated frequencies of deleted regions in HSA21 in four different tumor types from which DS patients have been reported to be protected. We describe three different regions of deletion pointing to a set of candidate genes that could explain the inverse comorbidity phenomenon between DS and solid tumors. In particular we found RCAN1 gene in Wilms tumors and a miRNA cluster containing miR-99A, miR-125B2 and miR-LET7C in lung, breast, and melanoma tumors as the main candidates for explaining the inverse comorbidity observed between solid tumors and DS. © 2015 Forés-Martos, Cervera-Vidal, Chirivella, Ramos-Jarero and Climent.


PubMed | Biomedical Research Institute INCLIVA
Type: Journal Article | Journal: International journal of molecular sciences | Year: 2016

Metformin, a drug approved for diabetes type II treatment, has been associated with a reduction in the incidence of breast cancer and metastasis and increased survival in diabetic breast cancer patients. High levels of miR-26a expression have been proposed as one of the possible mechanisms for this effect; likewise, this miRNA has also been associated with survival/apoptosis processes in breast cancer. Our aim was to evaluate if miR-26a and some of its targets could mediate the effect of metformin in breast cancer. The viability of MDA-MB-231, MDA-MB-468, and MCF-7 breast cancer cell lines was evaluated with an MTT assay after ectopic overexpression and/or downregulation of miR-26a. Similarly, the expression levels of the miR-26a targets CASP3, CCNE2, ABL2, APAF1, XIAP, BCL-2, PTEN, p53, E2F3, CDC25A, BCL2L1, MCL-1, EZH2, and MTDH were assessed by quantitative polymerase chain reaction (PCR). The effect of metformin treatment on breast cancer cell viability and miR-26a, BCL-2, PTEN, MCL-1, EZH2, and MTDH modulation were evaluated. Wound healing experiments were performed to analyze the effect of miR-26a and metformin treatment on cell migration. MiR-26a overexpression resulted in a reduction in cell viability that was partially recovered by inhibiting it. E2F3, MCL-1, EZH2, MTDH, and PTEN were downregulated by miR-26a and the PTEN (phosphatase and tensin homolog) protein was also reduced after miR-26a overexpression. Metformin treatment reduced breast cancer cell viability, increased miR-26a expression, and led to a reduction in BCL-2, EZH2, and PTEN expression. miR-26a inhibition partly prevents the metformin viability effect and the PTEN and EZH2 expression reduction. Our results indicate that metformin effectively reduces breast cancer cell viability and suggests that the effects of the drug are mediated by an increase in miR-26a expression and a reduction of its targets, PTEN and EHZ2 Thus, the use of metformin in breast cancer treatment constitutes a promising potential breast cancer therapy.


PubMed | Biomedical Research Institute INCLIVA
Type: Journal Article | Journal: International journal of cancer | Year: 2015

Multifactorial predisposition to melanoma includes genes involved in pigmentation, immunity and DNA repair. Nonetheless, missing heritability in melanoma is still important. We studied the role of 335 candidate SNPs in melanoma susceptibility by using a dedicated chip and investigating 110 genes involved in different pathways. A discovery set was comprised of 1069 melanoma patients and 925 controls from France. Data were replicated using validation phases II (1085 cases and 801 controls from Spain) and III (1808 cases and 1894 controls from Germany and a second set of Spanish samples). In addition, an exome sequencing study was performed in three high-risk French melanoma families. Nineteen SNPs in 17 genes were initially associated with melanoma in the French population. Six SNPs were replicated in phase II, including two new SNPs in the WNT3 (rs199524) and VPS41 (rs11773094) genes. The role of VPS41 and WNT3 was confirmed in a meta-analysis (3940 melanoma cases and 3620 controls) with two-side p values of 0.002, (OR=0.86) and 4.0710(-10) (OR=0.80), respectively. Exome sequencing revealed a non-synonymous VPS41 variant in one family that was shown to be strongly associated with familial melanoma (OR=4.46, p=0.001) in an independent sample of 178 melanoma families. WNT3 belongs to WNT pathway known to play a crucial role in melanoma, whereas VPS41 regulates vesicular trafficking and is thought to play a role in pigmentation. Our work identified two new pathways involved in melanoma predisposition. These results may be useful in the future for identifying individuals highly predisposed to melanoma.


Burriel V.,Polytechnic University of Valencia | Pastor O.,Polytechnic University of Valencia | Pena-Chilet M.,Biomedical Research Institute INCLIVA | Martinez M.T.,Biomedical Research Institute INCLIVA | Ribas G.,Biomedical Research Institute INCLIVA
Proceedings - International Conference on Research Challenges in Information Science | Year: 2016

Effective data management of clinical information is well-known to be a very complex task. The breast cancer context provides a good example of how challenging the problem is in Information Systems terms. In fact, it is one of the basic problems faced by clinicians who work in this area. However, this problem is even bigger when clinicians and biologists try to relate these data to biological data obtained from research studies about this disease. This paper shows how Conceptual Modeling practices provide reliable working environments where clinical and biological information are clearly linked. We focus on miRNAs expression studies in breast cancer patients as a representative study of biological data in this environment. Representing all these biological data using Conceptual Modeling techniques and connecting it with the clinical information properly modeled using the same technique, creates the appropriate background to develop an information system able to manage efficiently and analyze all this information. © 2016 IEEE.

Loading Biomedical Research Institute INCLIVA collaborators
Loading Biomedical Research Institute INCLIVA collaborators