Portland, United States
Portland, United States

Time filter

Source Type

News Article | March 1, 2017
Site: www.eurekalert.org

Sometimes good things come to those who wait. Two faculty advisers - Engineering Professors Panos Shiakolas and Pranesh Aswath - supervised a student team, led by Letia Blanco, about five years ago in designing and building a smart bandage, which allowed more efficient healing of wounds and delivery of multiple drugs on their own time schedules to the wound, she wasn't sure what would become of it. That design team now has a patent on their invention, which is titled, Controlled Release Nanoparticulate Matter Delivery System. "Our goal was to protect the wound and increase infection control," said Blanco, who is a lead engineer at Raytheon, after graduating from UTA with a degree in Mechanical and Aerospace Engineering. "Raytheon teamed up with UTA to secure the patent. It's very exciting." Blanco led the team that senior year in 2010. Also on the team were: Christopher Alberts, Kyle Godfrey, Andrew Patin and Chris Grace, all Mechanical and Aerospace Engineering graduates; Panos Shiakolas, UTA associate professor in the Mechanical and Aerospace Engineering Department; and Pranesh Aswath, UTA professor in the Materials Science and Engineering Department and vice provost for academic planning and policy. In addition, the team presented its findings through a refereed conference paper at the 2012 American Society of Mechanical Engineers Winter Annual Meeting conference and at a 2011 Biomedical Engineering Conference. More than half a million people in the United States seek medical treatment for burns every year and 40,000 of those have injuries severe enough to require hospitalization. In addition to the millions who suffer from burns, Blanco said the project appealed to the team because it had the ability to help soldiers in the field. "Many times, soldiers' dressings would have to be applied over and over again because health care providers would have to apply medicine," Blanco said. "Every time they had to do that, they had to undress and redress the wound. That process of changing the dressings was more dangerous than the technology we designed and developed." The device the student team designed increases the amount of time between dressing changes in two ways. First, a hydrogel is used to control the wound's temperature and that enables better, controlled drug delivery. Second, the device consists of many separate modules, which are connected by a flexible plastic allowing the bandage to comfortably conform to any wound. A lateral wiring scheme allows for bandage size customizing. Removable medicine trays allow used hydrogel to be removed and the electrical components sterilized, then recharged and reused. The team showed in its research that the device could be a profitable product that would reduce infections, ease patient discomfort, shorten hospital stays, lower medical costs and save lives. Just for the record, this is Patent No. 9,522,241 and was issued on Dec. 20, 2016. The entry also won the only award given out in 2011for the prestigious American Society for Materials International Undergraduate Design Competition. In addition, the students presented the findings at a 2012 ASME conference. Aswath, one of the senior design project's advisers, said the project shows the value of undergraduate research. "This is just one example of outstanding work done by our undergraduate students who can compete at the highest level and win competitions and get patents awarded," Aswath said. "They are all now successful in their careers and we are still in touch with the lead of the team, Letia Blanco, who is a rising star at Raytheon." Aswath said the patent embodies UTA's theme of health and the human condition within the University's Strategic Plan Bold Solutions | Global Impact. Shiakolas said the University is working with Blanco and Raytheon to look at future steps of commercializing the product. About The University of Texas at Arlington The University of Texas at Arlington is a Carnegie Research-1 "highest research activity" institution. With a projected global enrollment of close to 57,000, UTA is one of the largest institutions in the state of Texas. Guided by its Strategic Plan 2020 Bold Solutions|Global Impact, UTA fosters interdisciplinary research and education within four broad themes: health and the human condition, sustainable urban communities, global environmental impact, and data-driven discovery. UTA was recently cited by U.S. News & World Report as having the second lowest average student debt among U.S. universities. U.S. News & World Report ranks UTA fifth in the nation for undergraduate diversity. The University is a Hispanic-Serving Institution and is ranked as the top four-year college in Texas for veterans on Military Times' 2017 Best for Vets list.


A team led by Chong Xie, an assistant professor in the Department of Biomedical Engineering in the Cockrell School of Engineering, and Lan Luan, a research scientist in the Cockrell School and the College of Natural Sciences, have developed new probes that have mechanical compliances approaching that of the brain tissue and are more than 1,000 times more flexible than other neural probes. This ultra-flexibility leads to an improved ability to reliably record and track the electrical activity of individual neurons for long periods of time. There is a growing interest in developing long-term tracking of individual neurons for neural interface applications, such as extracting neural-control signals for amputees to control high-performance prostheses. It also opens up new possibilities to follow the progression of neurovascular and neurodegenerative diseases such as stroke, Parkinson's and Alzheimer's diseases. One of the problems with conventional probes is their size and mechanical stiffness; their larger dimensions and stiffer structures often cause damage around the tissue they encompass. Additionally, while it is possible for the conventional electrodes to record brain activity for months, they often provide unreliable and degrading recordings. It is also challenging for conventional electrodes to electrophysiologically track individual neurons for more than a few days. In contrast, the UT Austin team's electrodes are flexible enough that they comply with the microscale movements of tissue and still stay in place. The probe's size also drastically reduces the tissue displacement, so the brain interface is more stable, and the readings are more reliable for longer periods of time. To the researchers' knowledge, the UT Austin probe—which is as small as 10 microns at a thickness below 1 micron, and has a cross-section that is only a fraction of that of a neuron or blood capillary—is the smallest among all neural probes. "What we did in our research is prove that we can suppress tissue reaction while maintaining a stable recording," Xie said. "In our case, because the electrodes are very, very flexible, we don't see any sign of brain damage—neurons stayed alive even in contact with the NET probes, glial cells remained inactive and the vasculature didn't become leaky." In experiments in mouse models, the researchers found that the probe's flexibility and size prevented the agitation of glial cells, which is the normal biological reaction to a foreign body and leads to scarring and neuronal loss. "The most surprising part of our work is that the living brain tissue, the biological system, really doesn't mind having an artificial device around for months," Luan said. The researchers also used advanced imaging techniques in collaboration with biomedical engineering professor Andrew Dunn and neuroscientists Raymond Chitwood and Jenni Siegel from the Institute for Neuroscience at UT Austin to confirm that the NET enabled neural interface did not degrade in the mouse model for over four months of experiments. The researchers plan to continue testing their probes in animal models and hope to eventually engage in clinical testing. The research received funding from the UT BRAIN seed grant program, the Department of Defense and National Institutes of Health. Explore further: Mapping the brain: Probes with tiny LEDs shed light on neural pathways


News Article | February 15, 2017
Site: www.eurekalert.org

Engineering researchers at The University of Texas at Austin have designed ultra-flexible, nanoelectronic thread (NET) brain probes that can achieve more reliable long-term neural recording than existing probes and don't elicit scar formation when implanted. The researchers described their findings in a research article published on Feb. 15 in Science Advances. A team led by Chong Xie, an assistant professor in the Department of Biomedical Engineering in the Cockrell School of Engineering, and Lan Luan, a research scientist in the Cockrell School and the College of Natural Sciences, have developed new probes that have mechanical compliances approaching that of the brain tissue and are more than 1,000 times more flexible than other neural probes. This ultra-flexibility leads to an improved ability to reliably record and track the electrical activity of individual neurons for long periods of time. There is a growing interest in developing long-term tracking of individual neurons for neural interface applications, such as extracting neural-control signals for amputees to control high-performance prostheses. It also opens up new possibilities to follow the progression of neurovascular and neurodegenerative diseases such as stroke, Parkinson's and Alzheimer's diseases. One of the problems with conventional probes is their size and mechanical stiffness; their larger dimensions and stiffer structures often cause damage around the tissue they encompass. Additionally, while it is possible for the conventional electrodes to record brain activity for months, they often provide unreliable and degrading recordings. It is also challenging for conventional electrodes to electrophysiologically track individual neurons for more than a few days. In contrast, the UT Austin team's electrodes are flexible enough that they comply with the microscale movements of tissue and still stay in place. The probe's size also drastically reduces the tissue displacement, so the brain interface is more stable, and the readings are more reliable for longer periods of time. To the researchers' knowledge, the UT Austin probe -- which is as small as 10 microns at a thickness below 1 micron, and has a cross-section that is only a fraction of that of a neuron or blood capillary -- is the smallest among all neural probes. "What we did in our research is prove that we can suppress tissue reaction while maintaining a stable recording," Xie said. "In our case, because the electrodes are very, very flexible, we don't see any sign of brain damage -- neurons stayed alive even in contact with the NET probes, glial cells remained inactive and the vasculature didn't become leaky." In experiments in mouse models, the researchers found that the probe's flexibility and size prevented the agitation of glial cells, which is the normal biological reaction to a foreign body and leads to scarring and neuronal loss. "The most surprising part of our work is that the living brain tissue, the biological system, really doesn't mind having an artificial device around for months," Luan said. The researchers also used advanced imaging techniques in collaboration with biomedical engineering professor Andrew Dunn and neuroscientists Raymond Chitwood and Jenni Siegel from the Institute for Neuroscience at UT Austin to confirm that the NET enabled neural interface did not degrade in the mouse model for over four months of experiments. The researchers plan to continue testing their probes in animal models and hope to eventually engage in clinical testing. The research received funding from the UT BRAIN seed grant program, the Department of Defense and National Institutes of Health.


News Article | February 22, 2017
Site: www.eurekalert.org

The human heart beats more than 2.5 billion times in an average lifetime. Now scientists at Vanderbilt University have created a three-dimensional organ-on-a-chip that can mimic the heart's amazing biomechanical properties. "We created the I-Wire Heart-on-a-Chip so that we can understand why cardiac cells behave the way they do by asking the cells questions, instead of just watching them," said Gordon A. Cain University Professor John Wikswo, who heads up the project. "We believe it could prove invaluable in studying cardiac diseases, drug screening and drug development, and, in the future, in personalized medicine by identifying the cells taken from patients that can be used to patch damaged hearts effectively." The device and the results of initial experiments demonstrating that it faithfully reproduces the response of cardiac cells to two different drugs that affect heart function in humans are described in an article published last month in the journal Acta Biomaterialia. A companion article in the same issue presents a biomechanical analysis of the I-Wire platform that can be used for characterizing biomaterials for cardiac regenerative medicine. The unique aspect of the new device, which represents about two millionths of a human heart, is that it controls the mechanical force applied to cardiac cells. This allows the researchers to reproduce the mechanical conditions of the living heart, which is continually stretching and contracting, in addition to its electrical and biochemical environment. "Heart tissue, along with muscle, skeletal and vascular tissue, represents a special class of mechanically active biomaterials," said Wikswo. "Mechanical activity is an intrinsic property of these tissues so you can't fully understand how they function and how they fail without taking this factor into account." "Currently, we don't have many models for studying how the heart responds to stress. Without them, it is very difficult to develop new drugs that specifically address what goes wrong in these conditions," commented Charles Hong, associate professor of cardiovascular medicine at Vanderbilt's School of Medicine, who didn't participate in the research but is familiar with it. "This provides us with a really amazing model for studying how hearts fail." The I-Wire device consists of a thin thread of human cardiac cells 0.014 inches thick (about the size of 20-pound monofilament fishing line) stretched between two perpendicular wire anchors. The amount of tension on the fiber can be varied by moving the anchors in and out, and the tension is measured with a flexible probe that pushes against the side of the fiber. The fiber is supported by wires and a frame in an optically clear well that is filled with liquid medium like that which surrounds cardiac cells in the body. The apparatus is mounted on the stage of a powerful optical microscope that records the fiber's physical changes. The microscope also acts as a spectroscope that can provide information about the chemical changes taking place in the fiber. A floating microelectrode also measures the cells' electrical activity. According to the researchers, the I-Wire system can be used to characterize how cardiac cells respond to electrical stimulation and mechanical loads and can be implemented at low cost, small size and low fluid volumes, which make it suitable for screening drugs and toxins. Because of its potential applications, Vanderbilt University has patented the device. Unlike other heart-on-a-chip designs, I-Wire allows the researchers to grow cardiac cells under controlled, time-varying tension similar to what they experience in living hearts. As a consequence, the heart cells in the fiber align themselves in alternating dark and light bands, called sarcomeres, which are characteristic of human muscle tissue. The cardiac cells in most other heart-on-a-chip designs do not exhibit this natural organization. In addition, the researchers have determined that their heart-on-a-chip obeys the Frank-Starling law of the heart. The law, which was discovered by two physiologists in 1918, describes the relationship between the volume of blood filling the heart and the force with which cardiac cells contract. The I-Wire is one of the first heart-on-a-chip devices to do so. To demonstrate the I-Wire's value in determining the effects that different drugs have on the heart, the scientists tested its response with two drugs known to affect heart function in humans: isoproterenol and blebbistatin. Isoproterenol is a medication used to treat bradycardia (slow heart rate) and heart block (obstruction of the heart's natural pacemaker). Blebbistatin inhibits contractions in all types of muscle tissue, including the heart. According to Veniamin Sidorov, the research assistant professor at the Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE) who led its development, the device faithfully reproduces the response of cardiac cells in a living heart. "Cardiac tissue has two basic elements: an active, contractile element and a passive, elastic element," said Sidorov. "By separating these two elements with blebbistatin, we successfully characterized the elasticity of the artificial tissue. By exposing it to isoproterenol, we tested its response to adrenergic stimulation, which is one of the main systems responsible for regulation of heart contractions. We found that the relationship between these two elements in the cardiac fiber is consistent with that seen in natural tissue. This confirms that our heart-on-a-chip model provides us with a new way to study the elastic response of cardiac muscle, which is extremely complicated and is implicated in heart failure, hypertension, cardiac hypertrophy and cardiomyopathy." Other members of the VIIBRE research team are Professor of Pathology, Microbiology and Immunology Jeffrey Davidson, former Assistant Professor of Medicine Chee Lim (now at NIH), Assistant Professor of Biostatistics Matthew Shotwell and Associate Professor of Biomedical Engineering David Merryman, Senior R&D Engineer Philip Samson, postdoctoral fellow Tatiana Sidorova and doctoral student Alison Schroer. The I-Wire technology has been patented and is available for licensing. Interested parties should contact Ashok Choudhury or Masood Machingal at the Vanderbilt Center for Technology Transfer and Commercialization. The research was supported by National Institutes of Health grants 1R01118392-01, R01 HL118392, R01 HL095813 and 5R01-AR056138; National Science Foundation grants 1055384 and DGE-0909667; Defense Threat Reduction Agency grant CBMXCEL-XL1-2-001; American Heart Association grant 15PRE25710333; and by the Department of Veterans Affairs.


News Article | February 15, 2017
Site: www.prweb.com

Modality Solutions, LLC, a privately-held company that delivers integrated cold chain management solutions for highly regulated life sciences and food industries, has hired Gabrielle Mosiniak as one of the firm’s consulting engineers. Mosiniak attended The Ohio State University where she received her Bachelor of Science degree in biomedical engineering with a minor in biology. She was awarded the Provost Scholarship and graduated cum laude. Mosiniak assists with laboratory testing and completes protocols and reports for distribution and thermal testing at Modality's’ Advantage Transport Simulation Laboratory™. She also writes and updates standard operating procedures, and she assembles data packages for reporting. Through these responsibilities, Mosiniak consistently works with clients to listen to their needs so that she can design and develop cold chain packaging based on their parameters and objectives. Prior to joining the cold chain management team, Mosiniak worked for The Ohio State University Biomedical Engineering Department’s Summer Design Experience, where she implemented the Engineering Design Process to improve prototypes of past senior design projects. Working in a team-based environment, she focused on sensory prosthesis and red blood cell filter projects as well as gained experience with machining parts, simple circuit design, and Arduino programming. Mosiniak’s academic engineering projects expanded to Nanjing, China where she was selected to participate in international design research focused on heparin nanoparticles for cancer treatment at Nanjing University. Locally, as part of her senior year design project, the Lower Extremity Postural Support, she has been part of the interdisciplinary team collaborating with clinical and community mentors to reach the goal of designing and building a wheelchair to support residual limbs of patients with amputations. “Gabrielle joining our team of cold chain management experts supports our goals for continued growth,” said Modality Solutions President, Gary Hutchinson. “We are excited to have Gabrielle bring her experience to our proprietary transport simulation lab. She works independently and in collaboration with others to provide program management assistance as it relates to thermal packaging engineering solutions for our clients from highly-regulated industries such as life sciences, food, and biotechnology.” | To learn more about Modality Solutions visit http://www.modality-solutions.com. About Modality Solutions, LLC Founded in 2011 Modality Solutions delivers integrated cold chain management solutions for highly regulated industries. Its Advantage Transportation Simulation Laboratory™ tests the effects of transportation environmental hazards on formulations. Key areas of service are: ensure regulatory compliance; deliver cold chain thermal packaging design / qualification and controlled-environment logistics solutions; conduct transport simulation testing; decrease development cycle times for a faster route-to-market; develop transport validation strategies to support global regulatory applications; and clinical trial operations. The company's subject matter experts are frequent presenters at global cold chain industry conferences. For more information visit http://www.modality-solutions.com.


News Article | February 23, 2017
Site: www.eurekalert.org

Professor Julia Hirschberg has been elected to the National Academy of Engineering (NAE), one of the highest professional distinctions awarded to an engineer. Hirschberg was cited by the NAE for her "contributions to the use of prosody in text-to-speech and spoken dialogue systems, and to audio browsing and retrieval." Her research in speech analysis uses machine learning to help experts identify deceptive speech, and even to assess sentiment and emotion across languages and cultures. "I am thrilled to be elected to such an eminent group of researchers," said Hirschberg, who is the Percy K. and Vida L.W. Hudson Professor of Computer Science and chair of the Computer Science Department, as well as a member of the Data Science Institute. "It is such a great honor." Hirschberg's main area of research is computational linguistics, with a focus on prosody, or the relationship between intonation and discourse. Her current projects include research into emotional and deceptive speech, spoken dialogue systems, entrainment in dialogue, speech synthesis, text-to-speech synthesis in low-resource languages, and hedging behaviors. "I was very pleased to learn of Julia's election for her pioneering work at the intersection of linguistics and computer science," Mary C. Boyce, Dean of Engineering and Morris A. and Alma Schapiro Professor, said. "She works in an area that is central to the way we communicate, understand, and analyze our world today and is uncovering new paths that make us safer and better connected. As chair of Computer Science, she has also led the department through a period of tremendous growth and exciting changes." Hirschberg, who joined Columbia Engineering in 2002 as a professor in the Department of Computer Science and has served as department chair since 2012, earned her PhD in computer and information science from the University of Pennsylvania. She worked at AT&T Bell Laboratories, where in the 1980s and 1990s she pioneered techniques in text analysis for prosody assignment in text-to-speech synthesis, developing corpus-based statistical models that incorporate syntactic and discourse information, models that are in general use today. Hirschberg serves on numerous technical boards and editorial committees, including the IEEE Speech and Language Processing Technical Committee and the board of the Computing Research Association's Committee on the Status of Women in Computing Research (CRA-W). Previously she served as editor-in-chief of Computational Linguistics and co-editor-in-chief of Speech Communication and was on the Executive Board of the Association for Computational Linguistics (ACL), the Executive Board of the North American ACL, the CRA Board of Directors, the AAAI Council, the Permanent Council of International Conference on Spoken Language Processing (ICSLP), and the board of the International Speech Communication Association (ISCA). She also is noted for her leadership in promoting diversity, both at AT&T Bell Laboratories and Columbia, and for broadening participation in computing. Among her many honors, Hirschberg is a fellow of the IEEE (2017), the Association for Computing Machinery (2016), the Association for Computational Linguistics (2011), the International Speech Communication Association (2008), and the Association for the Advancement of Artificial Intelligence (1994); and she is a recipient of the IEEE James L. Flanagan Speech and Audio Processing Award (2011) and the ISCA Medal for Scientific Achievement (2011). In 2007, she received an Honorary Doctorate from the Royal Institute of Technology, Stockholm, and in 2014 was elected to the American Philosophical Society. Hirschberg joins Dean Boyce and many other Columbia Engineering colleagues who are NAE members; most recently elected were Professors David Yao (Industrial Engineering and Operations Research) in 2015, Gordana Vunjak-Novakovic (Biomedical Engineering) in 2012, and Mihalis Yannakakis (Computer Science) in 2011. On February 8, the NAE announced 84 new members and 22 foreign members, bringing its total U.S. membership to 2,281 and foreign members to 249. NAE membership honors those who have made outstanding contributions to engineering research, practice, or education, including significant contributions to the engineering literature, and to the pioneering of new and developing fields of technology, making major advancements in traditional fields of engineering, or developing/implementing innovative approaches to engineering education.


Developed by Northwestern University scientists, the device, called the Micro-ring resonator detector, can determine the speed of the blood flow and the oxygen metabolic rate at the back of the eye. This information could help diagnose such common and debilitating diseases as macular degeneration and diabetes. The Micro-ring device builds upon Professor Hao F. Zhang's groundbreaking work in 2006 to develop photoacoustic imaging, which combines sound and light waves to create images of biological materials. The imaging technique is being widely explored for both fundamental biological investigations and clinical diagnosis, from nanoscopic cellular imaging to human breast cancer screening. For three years, Zhang, associate professor of biomedical engineering, worked with Cheng Sun, associate professor of mechanical engineering, and their post-doctoral fellows Biqin Dong and Hao Li to create the Micro-ring resonator detector. "We believe that with this technology, optical ultrasound detection methods will play an increasingly important role in photoacoustic imaging for the retina and many biomedical applications," Zhang said. The team's work on the device resulted in a review article, published in the January 2017 edition of the journal Transactions on Biomedical Engineering. In 2006, Zhang was exploring new retinal imaging technologies when Dr. Amani Fawzi, now an associate professor of ophthalmology at Northwestern's Feinberg School of Medicine, approached him to create a new diagnostic device that could measure biological activities at the back of the eye. "We needed a device that had large enough bandwidth for spatial resolution," Zhang said. "And it needed to be optically transparent to allow light to go through freely." "Ultrasound detection devices of that time were usually bulky, opaque, and not sensitive enough. And they had limited bandwidth," Sun said. "It could only capture part of it what was happening in the eye." To meet Fawzi's challenge, the team needed to develop a radically different type of detector—small enough to be used with human eyes, soft enough to be integrated into a contact lens and yet generate a super-high resolution of hundreds of megahertz. "The trouble was to fabricate it, have it fit in the size of a contact lens, and make it still work," Sun said. First, the team considered a device that placed the needle-sized detector on the eyelid, but that method was not ideal. Next, they landed on the idea of a tiny ring implanted in a single-use contact lens worn during diagnosis. However, that idea added an extra challenge—making the device transparent. After nearly three years of work, they created the plastic Micro-ring resonator, a transparent device that is 60 micrometers in diameter and 1 micron high. There is movement toward using it with patients. The team continues to improve the device with support from Northwestern, the National Institutes of Health, Argonne National Laboratory, and the National Science Foundation. As word spreads about the device, about a dozen scientists from a variety of fields have approached the team about adapting it for their own work. For instance: More information: Biqin Dong et al, Optical Detection of Ultrasound in Photoacoustic Imaging, IEEE Transactions on Biomedical Engineering (2017). DOI: 10.1109/TBME.2016.2605451


News Article | February 28, 2017
Site: phys.org

Brian Samuels, M.D., assistant professor in the Department of Ophthalmology, and his fellow collaborators from the Georgia Institute of Technology and Emory University recently received a grant to study computational modeling as a method of determining why astronauts who are in space for extended periods of time are experiencing eye pathologies. Samuels is collaborating with scientists at the NASA Glenn Research Center, and others, to help identify the cause of these pathologies, and determine whether there is a way to intervene and prevent these types of vision complications in the future. "We know that, if astronauts are in space for extended amounts of time, they have a higher propensity for developing pathologies similar to increased intracranial pressure," Samuels said. "We are trying to incorporate all of the existing clinical and research data into functional computational models of the eye itself, the central nervous system and the cardiovascular system to determine how they are interacting." He says these computational models should answer some of the questions as to "why this is happening to our astronauts." The length of time astronauts stayed in space changed in the mid-2000s when the International Space Station started being used. Space shuttle missions typically lasted two weeks, but now the ISS missions may last six months or longer. Astronauts were no longer going up to space and quickly coming back down to Earth. It was around this time the scientific community noticed that longer durations in space, in microgravity, caused a larger propensity for changes in the eye. Many astronauts who experience these vision issues are encountering a hyperopic shift in their vision, meaning they gradually become farsighted. Astronauts can develop folds in the retina, experience swelling of the optic disk and also have distention of the optic nerve sheath behind the eye. Some astronauts who have returned from a mission are still experiencing vision issues five years later. Samuels and his colleagues believe there may be some permanent remodeling changes in the eye after extended periods of time in space. "Given that one of NASA's primary goals is to send someone to Mars, this will be the longest amount of time humans have spent in space thus far," Samuels said. "If we are able to identify risk factors that might predispose someone to these types of issues in space, the computational models could become a screening tool for future astronauts." Samuels says he also wants to find the direct cause behind these eye pathologies in an effort to develop tools to halt this process for astronauts in space. "If an astronaut is six months from coming home and is already experiencing vision-related issues, we want to temporize any further damage that may occur," he said. Samuels' role in this project is to interpret clinical and research data that informs the computational modeling and relay back to the other investigators whether the output data obtained from the models is realistic. As a clinician-scientist, he can take information that is gathered from research studies, clinical studies and computational modeling in the lab, and compare it to real-world scenarios in a clinic. C. Ross Ethier, Ph.D., professor and interim chair of the Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology, is the project lead. "Dr. Samuels helps ground us in clinical reality by relating effects in space to clinical conditions on Earth, detailing pathophysiologic processes at the cellular level to clinical outcomes," Ethier said. "He is an incredible resource for our team and the broader space physiology community." Explore further: Astronaut vision may be impaired by spinal fluid changes: study


News Article | February 27, 2017
Site: www.eurekalert.org

Great ideas so often get lost in translation -- from the math teacher who can't get through to his students, to a stand-up comedian who bombs during an open mic night. But how can we measure whether our audiences understand what we're trying to convey? And better yet, how can we improve that exchange? Drexel University biomedical engineers, in collaboration with Princeton University psychologists, are using a wearable brain-imaging device to see just how brains sync up when humans interact. It is one of many applications for this functional near-infrared spectroscopy (or fNIRS) system, which uses light to measure neural activity during real-life situations and can be worn like a headband. Published in Scientific Reports on Monday, a new study shows that the fNIRS device can successfully measure brain synchronization during conversation. The technology can now be used to study everything from doctor-patient communication, to how people consume cable news. "Being able to look at how multiple brains interact is an emerging context in social neuroscience," said Hasan Ayaz, PhD, an associate research professor in Drexel's School of Biomedical Engineering, Science and Health Systems, who led the research team. "We live in a social world where everybody is interacting. And we now have a tool that can give us richer information about the brain during everyday tasks -- such as natural communication -- that we could not receive in artificial lab settings or from single brain studies." The current study is based on previous research from Uri Hasson, PhD, associate professor at Princeton University, who has used functional Magnetic Resonance Imaging (fMRI) to study the brain mechanisms underlying the production and comprehension of language. Hasson has found that a listener's brain activity actually mirrors the speaker's brain when he or she is telling story about a real-life experience. And higher coupling is associated with better understanding. However, traditional brain imaging methods have certain limitations. In particular, fMRI requires subjects to lie down motionlessly in a noisy scanning environment. With this kind of set-up, it is not possible to simultaneously scan the brains of multiple individuals who are speaking face-to-face. This is why the Drexel researchers sought to investigate whether the portable fNIRS system could be a more effective approach to probe the brain-to-brain coupling question in natural settings. For their study, a native English speaker and two native Turkish speakers told an unrehearsed, real-life story in their native language. Their stories were recorded and their brains were scanned using fNIRS. Fifteen English speakers then listened to the recording, in addition to a story that was recorded at a live storytelling event. The researchers targeted the prefrontal and parietal areas of the brain, which include cognitive and higher order areas that are involved in a person's capacity to discern beliefs, desires and goals of others. They hypothesized that a listener's brain activity would correlate with the speaker's only when listening to a story they understood (the English version). A second objective of the study was to compare the fNIRS results with data from a similar study that had used fMRI, in order to compare the two methods. They found that when the fNIRS measured the oxygenation and deoxygenation of blood cells in the test subject's brains, the listeners' brain activity matched only with the English speakers. These results also correlated with the previous fMRI study. This new research supports fNIRS as a viable future tool to study brain-to-brain coupling during social interaction. The system can be used to offer important information about how to better communicate in many different environments, including classrooms, business meetings, political rallies and doctors' offices. "This would not be feasible with fMRI. There are too many challenges," said Banu Onaral, PhD, the H. H. Sun Professor in the School of Biomedical Engineering, Science and Health Systems. "Now that we know fNIRS is a feasible tool, we are moving into an exciting era when we can know so much more about how the brain works as people engage in everyday tasks." This study was conducted at the Cognitive Neuroengineering and Quantitative Experimental Research (CONQUER) Collaborative, a multi-disciplinary brain observatory at Drexel University.


News Article | February 18, 2017
Site: phys.org

Vadim Backman and Hao Zhang, nanoscale imaging experts at Northwestern University, have developed a new imaging technology that is the first to see DNA "blink," or fluoresce. The tool enables the researchers to study individual biomolecules as well as important global patterns of gene expression, which could yield insights into cancer. Backman will discuss the tool and its applications—including the new concept of macrogenomics, a technology that aims to regulate the global patterns of gene expression without gene editing—Friday (Feb. 17) at the American Association for the Advancement of Science (AAAS) annual meeting in Boston. The talk, "Label-Free Super-Resolution Imaging of Chromatin Structure and Dynamics," is part of the symposium "Optical Nanoscale Imaging: Unraveling the Chromatin Structure-Function Relationship," which will be held from 1 to 2:30 p.m. Eastern Time Feb. 17 in Room 206, Hynes Convention Center. The Northwestern tool features six-nanometer resolution and is the first to break the 10-nanometer resolution threshold. It can image DNA, chromatin and proteins in cells in their native states, without the need for labels. For decades, textbooks have stated that macromolecules within living cells, such as DNA, RNA and proteins, do not have visible fluorescence on their own. "People have overlooked this natural effect because they didn't question conventional wisdom," said Backman, the Walter Dill Professor of Biomedical Engineering in the McCormick School of Engineering. "With our super-resolution imaging, we found that DNA and other biomolecules do fluoresce, but only for a very short time. Then they rest for a very long time, in a 'dark' state. The natural fluorescence was beautiful to see." Backman, Zhang and collaborators now are using the label-free technique to study chromatin—the bundle of genetic material in the cell nucleus—to see how it is organized. Zhang is an associate professor of biomedical engineering at McCormick. "Insights into the workings of the chromatin folding code, which regulates patterns of gene expression, will help us better understand cancer and its ability to adapt to changing environments," Backman said. "Cancer is not a single-gene disease." Current technology for imaging DNA and other genetic material relies on special fluorescent dyes to enhance contrast when macromolecules are imaged. These dyes may perturb cell function, and some eventually kill the cells—undesirable effects in scientific studies. In contrast, the Northwestern technique, called spectroscopic intrinsic-contrast photon-localization optical nanoscopy (SICLON), allows researchers to study biomolecules in their natural environment, without the need for these fluorescent labels. Backman, Zhang and Cheng Sun, an associate professor of mechanical engineering at McCormick, discovered that when illuminated with visible light, the biomolecules get excited and light up well enough to be imaged without fluorescent stains. When excited with the right wavelength, the biomolecules even light up better than they would with the best, most powerful fluorescent labels. "Our technology will allow us and the broader research community to push the boundaries of nanoscopic imaging and molecular biology even further," Backman said.

Loading Biomedical Engineering collaborators
Loading Biomedical Engineering collaborators