Entity

Time filter

Source Type

Auckland, New Zealand

Lai K.,University of Queensland | Duran C.,Biomatters | Berkman P.J.,University of Queensland | Lorenc M.T.,University of Queensland | And 10 more authors.
Plant Biotechnology Journal | Year: 2012

Single nucleotide polymorphisms (SNPs) are the most abundant type of molecular genetic marker and can be used for producing high-resolution genetic maps, marker-trait association studies and marker-assisted breeding. Large polyploid genomes such as wheat present a challenge for SNP discovery because of the potential presence of multiple homoeologs for each gene. AutoSNPdb has been successfully applied to identify SNPs from Sanger sequence data for several species, including barley, rice and Brassica, but the volume of data required to accurately call SNPs in the complex genome of wheat has prevented its application to this important crop. DNA sequencing technology has been revolutionized by the introduction of next-generation sequencing, and it is now possible to generate several million sequence reads in a timely and cost-effective manner. We have produced wheat transcriptome sequence data using 454 sequencing technology and applied this for SNP discovery using a modified autoSNPdb method, which integrates SNP and gene annotation information with a graphical viewer. A total of 4694141 sequence reads from three bread wheat varieties were assembled to identify a total of 38928 candidate SNPs. Each SNP is within an assembly complete with annotation, enabling the selection of polymorphism within genes of interest. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd. Source


Parker M.,Smithsonian Institution | Stones-Havas S.,Biomatters | Starger C.,Smithsonian Institution | Meyer C.,Smithsonian Institution
Methods in Molecular Biology | Year: 2012

In the field of molecular biology, laboratory information management systems (LIMSs) have been created to track workflows through a process pipeline. For the purposes of DNA barcoding, this workflow involves tracking tissues through extraction, PCR, cycle sequencing, and consensus assembly. Importantly, a LIMS that serves the DNA barcoding community must link required elements for public submissions (e.g., primers, trace files) that are generated in the molecular lab with specimen metadata. Here, we demonstrate an example workflow of a specimen's entry into the LIMS database to the publishing of the specimen's genetic data to a public database using Geneious bioinformatics software. Throughout the process, the connections between steps in the workflow are maintained to facilitate post-processing annotation, structured reporting, and fully transparent edits to reduce subjectivity and increase repeatability. © 2012 Springer Science+Business Media, LLC. Source


Lai K.,University of Queensland | Berkman P.J.,University of Queensland | Lorenc M.T.,University of Queensland | Duran C.,University of Queensland | And 5 more authors.
Plant and Cell Physiology | Year: 2012

Bread wheat (Triticum aestivum) is one of the most important crop plants, globally providing staple food for a large proportion of the human population. However, improvement of this crop has been limited due to its large and complex genome. Advances in genomics are supporting wheat crop improvement. We provide a variety of web-based systems hosting wheat genome and genomic data to support wheat research and crop improvement. WheatGenome.info is an integrated database resource which includes multiple web-based applications. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second-generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This system includes links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/. © 2011 The Author. Source


Ramstad K.M.,University of South Carolina | Ramstad K.M.,Victoria University of Wellington | Miller H.C.,Biomatters | Kolle G.,Illumina
BMC Genomics | Year: 2016

Background: Kiwi represent the most basal extant avian lineage (paleognaths) and exhibit biological attributes that are unusual or extreme among living birds, such as large egg size, strong olfaction, nocturnality, flightlessness and long lifespan. Despite intense interest in their evolution and their threatened status, genomic resources for kiwi were virtually non-existent until the recent publication of a single genome. Here we present the most comprehensive kiwi transcriptomes to date, obtained via Illumina sequencing of whole blood and de novo assembly of mRNA sequences of eight individuals from each of the two rarest kiwi species, little spotted kiwi (LSK; Apteryx owenii) and rowi (A. rowi). Results: Sequences obtained were orthologous with a wide diversity of functional genes despite the sequencing of a single tissue type. Individual and composite assemblies contain more than 7900 unique protein coding transcripts in each of LSK and rowi that show strong homology with chicken (Gallus gallus), including those associated with growth, development, disease resistance, reproduction and behavior. The assemblies also contain 66,909 SNPs that distinguish between LSK and rowi, 12,384 SNPs among LSK (associated with 3088 genes), and 29,313 SNPs among rowi (associated with 4953 genes). We found 3084 transcripts differentially expressed between LSK and rowi and 150 transcripts differentially expressed between the sexes. Of the latter, 83 could be mapped to chicken chromosomes with 95% syntenic with chromosome Z. Conclusions: Our study has simultaneously sequenced multiple species, sexes, and individual kiwi at thousands of genes, and thus represents a significant leap forward in genomic resources available for kiwi. The expression pattern we observed among chromosome Z related genes in kiwi is similar to that observed in ostriches and emu, suggesting a common and ancestral pattern of sex chromosome homomorphy, recombination, and gene dosage among living paleognaths. The transcriptome assemblies described here will provide a rich resource for polymorphic marker development and studies of adaptation of these highly unusual and endangered birds. © 2016 Ramstad et al. Source


Trevarton A.J.,University of Auckland | Mann M.B.,Methodist Hospital Research Institute | Knapp C.,University of Auckland | Araki H.,Kyushu University | And 7 more authors.
Frontiers in Oncology | Year: 2013

Despite on-going research, metastatic melanoma survival rates remain low and treatment options are limited. Researchers can now access a rapidly growing amount of molecular and clinical information about melanoma. This information is becoming difficult to assemble and interpret due to its dispersed nature, yet as it grows it becomes increasingly valuable for understanding melanoma. Integration of this information into a comprehensive resource to aid rational experimental design and patient stratification is needed. As an initial step in this direction, we have assembled a web-accessible melanoma database, MelanomaDB, which incorporates clinical and molecular data from publically available sources, which will be regularly updated as new information becomes available. This database allows complex links to be drawn between many different aspects of melanoma biology: genetic changes (e.g., mutations) in individual melanomas revealed by DNA sequencing, associations between gene expression and patient survival, data concerning drug targets, biomarkers, druggability, and clinical trials, as well as our own statistical analysis of relationships between molecular pathways and clinical parameters that have been produced using these data sets. The database is freely available at http://genesetdb.auckland.ac.nz/melanomadb/about.html. A subset of the information in the database can also be accessed through a freely available web application in the Illumina genomic cloud computing platform BaseSpace at http://www.biomatters.com/apps/melanoma-profiler-for-research. The MelanomaDB database illustrates dysregulation of specific signaling pathways across 310 exome-sequenced melanomas and in individual tumors and identifies the distribution of somatic variants in melanoma. We suggest that MelanomaDB can provide a context in which to interpret the tumor molecular profiles of individual melanoma patients relative to biological information and available drug therapies. © 2013 Trevarton, Mann, Knapp, Araki, Wren, Stones-Havas, Black and Print. Source

Discover hidden collaborations