Entity

Time filter

Source Type


Miyagi H.,Tokyo Institute of Technology | Nag K.,Tokyo Institute of Technology | Nag K.,Biomaterials Center for Regenerative Medical Engineering | Sultana N.,Tokyo Institute of Technology | And 3 more authors.
Gene | Year: 2016

Zebrafish connexin 36.7 (cx36.7/ecx) has been identified as a key molecule in the early stages of heart development in this species. A defect in cx36.7 causes severe heart malformation due to the downregulation of nkx2.5 expression, a result which resembles congenital heart disease in humans. It has been shown that cx36.7 is expressed specifically in early developing heart cardiomyocytes. However, the regulatory mechanism for the cardiac-restricted expression of cx36.7 remains to be elucidated. In this study we isolated the 5'-flanking promoter region of the cx36.7 gene and characterized its promoter activity in zebrafish embryos. Deletion analysis showed that a 316-bp upstream region is essential for cardiac-restricted expression. This region contains four GATA elements, the proximal two of which are responsible for promoter activation in the embryonic heart and serve as binding sites for gata4. When gata4, gata5 and gata6 were simultaneously knocked down, the promoter activity was significantly decreased. Moreover, the deletion of the region between -. 316 and -. 133. bp led to EGFP expression in the embryonic trunk muscle. The distal two GATA and A/T-rich elements in this region act as repressors of promoter activity in skeletal muscle. These results suggest that cx36.7 expression is directed by cardiac promoter activation via the two proximal GATA elements as well as by skeletal muscle-specific promoter repression via the two distal GATA elements. © 2015 Elsevier B.V. Source


Zhang Y.,Nankai University | Mao H.,Nankai University | Mao H.,RIKEN | Qian M.,Nankai University | And 8 more authors.
Journal of Materials Chemistry B | Year: 2016

To effectively expand human mesenchymal stem cells (hMSCs) in vitro without affecting their innate biological properties, a fusion protein (hE-cad-Fc) consisting of a human E-cadherin extracellular domain and an immunoglobulin G Fc region was fabricated and used as a biomimetic matrix for MSC culture surface modification. The results showed that cells cultured on hE-cad-Fc-modified polystyrene surfaces exhibited improved proliferation and paracrine functions compared with cells cultured on unmodified and collagen-modified polystyrene surfaces. Meanwhile, surfaces modified with hE-cad-Fc effectively inhibited cell apoptosis even under the serum deprivation conditions. Additionally, the hE-cad-Fc not only up-regulated the expression of β-catenin in MSCs and stimulated the cellular membrane complex of E-cadherin/β-catenin, but also effectively activated the intracellular signals such as EGFR, AKT and ERK phosphorylation. Therefore, hE-cad-Fc appeared to be a promising candidate for biological surface modification and stem cell culture. © 2016 The Royal Society of Chemistry. Source


Shibata-Seki T.,Tokyo Institute of Technology | Tajima K.,Tokyo Medical University | Takahashi H.,Tokyo Medical University | Seki H.,Tokyo Institute of Technology | And 8 more authors.
Analytical and Bioanalytical Chemistry | Year: 2015

Abstract We present a characterization of chemically treated cells using atomic force microscopy (AFM) which can observe changes in morphology and elasticity of cells. Since AFM has the significant advantage that it does not require fixation of samples, the method is simple and can capture various properties of living cells. In this study, corneal epithelial and endothelial cells were examined. The topography images of the corneal cells without glutaraldehyde (GA) fixation were successfully obtained. The images showed a natural three-dimensional shape of these cells, which scanning electron microscope (SEM) images could not provide. The AFM images of GA-fixed cells were taken and compared with a SEM image reported in the literature. Our results show that longer time for GA fixation makes the surface of the corneal endothelial tissue stiffer. Also, longer treatment results in relatively large structural variation in samples. Combined with conventional histochemical methods, this approach helps us gain an overall understanding of the influence of such chemical treatment. © 2015 Springer-Verlag Berlin Heidelberg. Source


Wu X.,Osaka University | Wu X.,Japan Society for the Promotion of Science | Yamamoto H.,Osaka University | Nakanishi H.,Nakanishi Gastroenterological Research Institute | And 16 more authors.
PLoS ONE | Year: 2015

RNA interference (RNAi) technology is currently being tested in clinical trials for a limited number of diseases. However, systemic delivery of small interfering RNA (siRNA) to solid tumors has not yet been achieved in clinics. Here, we introduce an in vivo pH-sensitive delivery system for siRNA using super carbonate apatite (sCA) nanoparticles, which is the smallest class of nanocarrier. These carriers consist simply of inorganic ions and accumulate specifically in tumors, yet they cause no serious adverse events in mice and monkeys. Intravenously administered sCA-siRNA abundantly accumulated in the cytoplasm of tumor cells at 4 h, indicating quick achievement of endosomal escape. sCA-survivin-siRNA induced apoptosis in HT29 tumors and significantly inhibited in vivo tumor growth of HCT116, to a greater extent than two other in vivo delivery reagents. With innovative in vivo delivery efficiency, sCA could be a useful nanoparticle for the therapy of solid tumors. © 2015 Wu et al. Source


Xu K.,Nankai University | Shuai Q.,Nankai University | Li X.,Nankai University | Zhang Y.,Nankai University | And 7 more authors.
Biomacromolecules | Year: 2016

In an attempt to enhance endothelial cell capture and promote the vascularization of engineered tissue, we biosynthesized and characterized the recombinant fusion protein consisting of human vascular endothelial-cadherin extracellular domain and immunoglobulin IgG Fc region (hVE-cad-Fc) to serve as a bioartificial extracellular matrix. The hVE-cad-Fc protein naturally formed homodimers and was used to construct hVE-cad-Fc matrix by stably adsorbing on polystyrene plates. Atomic force microscop assay showed uniform hVE-cad-Fc distribution with nanorod topography. The hVE-cad-Fc matrix markedly promoted human umbilical vein endothelial cells (HUVECs) adhesion and proliferation with fibroblastoid morphology. Additionally, the hVE-cad-Fc matrix improved HUVECs migration, vWF expression, and NO release, which are closely related to vascularization. Furthermore, the hVE-cad-Fc matrix activated endogenous VE-cadherin/β-catenin proteins and effectively triggered the intracellular signals such as F-actin stress fiber, p-FAK, AKT, and Bcl-2. Taken together, hVE-cad-Fc could be a promising bioartificial matrix to promote vascularization in tissue engineering. © 2016 American Chemical Society. Source

Discover hidden collaborations