Time filter

Source Type

Apeldoorn, Netherlands

Gan J.,Texas A&M University | Smith C.T.,University of Toronto | Langeveld J.W.A.,Biomass Research
Journal of Environmental Management | Year: 2012

Fertilizer use, widely practiced in forest plantation management to stimulate tree growth, contributes to greenhouse gas (GHG) emissions. We explore how accounting for GHG consequences affects optimal fertilizer application rates of commercial forest plantations. A generic model that maximizes the equivalent annual net benefit of timber production and GHG balance is developed and applied to loblolly pine (Pinus taeda L.) plantations in the southern United States. We find that fertilizer use still is a viable practice for managing loblolly pine plantations in the region although fertilizer application rate should be reduced when GHG consequences are valued. A greater reduction in fertilizer application rate is recommended where wood is used for paper production because life cycle GHG emissions of paper products are much higher than those of solid wood or bioenergy products. A higher fertilizer rate should be applied when forest residues are used for the production of bioenergy that offsets GHG emissions from consuming fossil fuels. © 2012 Elsevier Ltd.

Gan J.,Texas A&M University | Langeveld J.W.A.,Biomass Research | Smith C.T.,University of Toronto
Environmental Management | Year: 2014

Bioenergy production involves different agents with potentially different objectives, and an agent's decision often has transboundary impacts on other agents along the bioenergy value chain. Understanding and estimating the transboundary impacts is essential to portraying the interactions among the different agents and in the search for the optimal configuration of the bioenergy value chain. We develop an agent-based model to mimic the decision making by feedstock producers and feedstock-to-biofuel conversion plant operators and propose multipliers (i.e., ratios of economic values accruing to different segments and associated agents in the value chain) for assessing the transboundary impacts. Our approach is generic and thus applicable to a variety of bioenergy production systems at different sites and geographic scales. We apply it to the case of producing ethanol using corn stover in Iowa, USA. The results from the case study indicate that stover removal rate is site specific and varies considerably with soil type, as well as other factors, such as stover price and harvesting cost. In addition, ethanol production using corn stover in the study region would have strong positive ripple effects, with the values of multipliers varying with greenhouse gas price and national energy security premium. The relatively high multiplier values suggest that a large portion of the value associated with corn stover ethanol production would accrue to the downstream end of the value chain instead of stover producers. © 2013 Springer Science+Business Media New York.

Dale V.H.,Oak Ridge National Laboratory | Kline K.L.,Oak Ridge National Laboratory | Kaffka S.R.,University of California at Davis | Langeveld J.W.A.,Biomass Research
Landscape Ecology | Year: 2013

Agricultural sustainability considers the effects of farm activities on social, economic, and environmental conditions at local and regional scales. Adoption of more sustainable agricultural practices entails defining sustainability, developing easily measured indicators of sustainability, moving toward integrated agricultural systems, and offering incentives or imposing regulations to affect farmer behavior. Landscape ecology is an informative discipline in considering sustainability because it provides theory and methods for dealing with spatial heterogeneity, scaling, integration, and complexity. To move toward more sustainable agriculture, we propose adopting a systems perspective, recognizing spatial heterogeneity, integrating landscape-design principles and addressing the influences of context, such as the particular products and their distribution, policy background, stakeholder values, location, temporal influences, spatial scale, and baseline conditions. Topics that need further attention at local and regional scales include (1) protocols for quantifying material and energy flows; (2) standard specifications for management practices and corresponding effects; (3) incentives and disincentives for enhancing economic, environmental, and social conditions (including financial, regulatory and other behavioral motivations); (4) integrated landscape planning and management; (5) monitoring and assessment; (6) effects of societal demand; and (7) integrative policies for promoting agricultural sustainability. © 2012 Springer Science+Business Media Dordrecht (outside the USA).

Langeveld J.W.A.,Biomass Research | Kalf R.,KEMA | Elbersen H.W.,Agrotechnology and Food Science Group
Biofuels, Bioproducts and Biorefining | Year: 2010

Development of bioenergy production in the Netherlands is lagging. This paper presents an inventory of problems met by new bioenergy chains and compares these to literature and to other countries. Theoretical frameworks suggest that five elements are crucial for successful bioenergy chain development: (i) availability of (proven) technology; (ii) access to information; (iii) access to feedstocks, financial means, and markets; (iv) locations for new installations; and (v) efficient lobby activities and public support. Nine bioenergy chains were interviewed. Problems that are reported relate to insufficient knowledge of new technological concepts, and of nuisances (noise, emission, odor, and other) caused during bioenergy production. Feedstock markets (wood, byproducts, waste) and product markets (heat, CO 2) are underdeveloped, while some chains are experiencing extra problems finding a suitable location or obtaining necessary permits. Problems related to insufficient public support are most relevant for bioenergy chains depending on tax exemptions (pure vegetation oil transportation fuels) or requiring adaptation of legislation (location permits for farm fermenters). An international comparison to barriers for biofuel suggests that economic factors (including lack of capital), limitations in know-how and institutional capacities, underdeveloped biomass and carbon markets, problems in chain coordination, and limited public support are largest problems for new bioenergy chains. Recommendations to stimulate bioenergy production in the Netherlands refer to performance standards for new installation types, information on feedstock availability, protocols for heat exchange and on improved credit facilities. © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd.

Elbersen B.S.,Wageningen University | Annevelink E.,Wageningen UR Food and Biobased Research | Roos Klein-Lankhorst J.,Wageningen University | Lesschen J.P.,Wageningen University | And 4 more authors.
Regional Environmental Change | Year: 2014

In this paper, we first provide a brief overview of other decision support tools for bioenergy and assess to which extent the integrated tool central in this paper is different and novel. Next, a description is given of the tool, the different models used and the functionalities. The working of the tool is then illustrated with three case studies based in the northern part of The Netherlands. The computerised tool is meant to support the communication process between stakeholders to come to the implementation of regional biomass delivery chains. It helps to create a quick and common understanding of optimal biomass use in a region. Although the tool has been applied only to bioenergy chains, other biochemical and biomaterial chains are also suitable to be incorporated. The three case studies presented include a conventional sugar beet bioethanol production chain, an advanced Miscanthus bioethanol conversion chain and a straw-based electricity chain. The main conclusions are that optimal biomass use for non-food purposes from a sustainability and resource-efficient perspective depend on many different factors specific to the conversion chains. For example, the green house gas (GHG) emission and mitigation potential of a sugar beet-based bioethanol chain requires careful organisation particularly on the primary biomass production and transport, while in a straw-based electricity chain, the largest efficiency gains can be reached in the conversion part. Land use change (LUC) to sugar beet generally causes more negative environmental impacts than LUC to Miscanthus. This applies to both GHG efficiency, soil organic carbon content and emissions of nitrogen to surface waters. At the same time, it becomes clear that the different scenario assumptions can be very influential, particularly on the final economic performance of a chain. Overall, it is clear from the cases that the users understand much better under which circumstances and through which mechanisms the designed chains can become profitable and can become more environmentally sustainable. © 2014 Springer-Verlag Berlin Heidelberg.

Discover hidden collaborations