Biomarkers Unit

Conca dei Marini, Italy

Biomarkers Unit

Conca dei Marini, Italy
SEARCH FILTERS
Time filter
Source Type

PubMed | Biomarkers Unit, ScreenCell and Fondazione IRCCS Instituto Nazionale dei Tumori
Type: Journal Article | Journal: The International journal of biological markers | Year: 2015

To compare circulating tumor cell (CTC) detection rates in patients with early (M0) and metastatic (M+) breast cancer using 2 positive-selection methods or size-based unbiased enrichment.Blood collected at baseline and at different times during treatment from M0 patients undergoing neoadjuvant therapy and from M+ women starting a new line of treatment was processed in parallel using AdnaTest EMT-1/ and EMT-2/Stem CellSelect/Detect kits or ScreenCell Cyto devices. CTC positivity was defined according to the suggested cutoffs and cytological parameters, respectively.Higher CTC detection rates were obtained with the AdnaTest approach when using for CTC-enrichment antibodies against ERBB2 and EGFR in addition to MUC1 and the classical epithelial surface marker EPCAM (13% vs. 48%). In M0 patients mainly, CTC positivity rates further increased when EMT- and stemness-related marker expression (PIK3CA, AKT2 and ALDH1) was evaluated in addition to EPCAM, MUC1 and ERBB2. When the physical properties of tumor cells were exploited, CTCs were detected at higher percentages than with positive-selection-based methods, without any difference between clinical stages (78% in M0 vs. 72% in M+ cases at baseline). Circulating tumor microemboli (CTMs) were detected in addition to single CTCs with significantly higher frequency in M0 than M+ samples (78% vs. 27%, p = 0.0002).Different approaches for CTC detection probably identify distinct tumor cell subpopulations, but need technical standardization before their clinical validity and biological specificity may be adequately investigated. The distinct role of CTMs compared with CTCs as prognostic and predictive biomarkers represents a further challenge.


PubMed | Biomarkers Unit, U.O. Multidisciplinare di Patologia Mammaria, Fondazione IRCCS Instituto Nazionale dei Tumori and Medical Oncology Unit and
Type: Journal Article | Journal: Clinical chemistry | Year: 2014

Determining the transcriptional profile of circulating tumor cells (CTCs) may allow the acquisition of clinically relevant information while overcoming tumor heterogeneity-related biases associated with use of tissue samples for biomarker assessment. However, such molecular characterization is challenging because CTCs are rare and outnumbered by blood cells.Here, we describe a technical protocol to measure the expression of >29 000 genes in CTCs captured from whole blood with magnetic beads linked with antibodies against epithelial cell adhesion molecule (EpCAM) and the carcinoma-associated mucin, MUC1, designed to be used for CTC characterization in clinical samples. Low numbers of cells (5-200) from the MCF7 and MDA-MB-468 breast cancer cell lines were spiked in healthy donor blood samples and isolated with the AdnaTest EMT-1/Stem CellSelect kit. Gene expression profiles (GEPs) were obtained with the WG-DASL HT assay and compared with GEPs obtained from RNA isolated from cultured cell lines and unspiked samples.GEPs from samples containing 25 or more spiked cells correlated (r = 0.95) with cognate 100-ng RNA input samples, clustered separately from blood control samples, and allowed MCF7 and MDA-MB-468 cells to be distinguished. GEPs with comparable technical quality were also obtained in a preliminary series of clinical samples.Our approach allows technically reliable GEPs to be obtained from isolated CTCs for the acquisition of biologically useful information. It is reproducible and suitable for application in prospective studies to assess the clinical utility of CTC GEPs, provided that >25 CTCs can be isolated.

Loading Biomarkers Unit collaborators
Loading Biomarkers Unit collaborators