Entity

Time filter

Source Type


Kato H.,Tokyo Medical University | Nishimura T.,Tokyo Medical University | Ikeda N.,Tokyo Medical University | Yamada T.,National Cancer Center Research Institute | And 22 more authors.
Journal of Proteomics | Year: 2011

Lung cancer, COPD and cardiovascular diseases are highlighted as some of the most common disease that cause mortality, and for that reason are the most active areas for drug development. This perspective paper overviews the urgent need to develop a health care system for a rapidly growing patient population in Japan, including forthcoming demands on clinical care, expecting outcomes, and economics. There is an increasing requirement to build on the strengths of the current health care system, thereby delivering urgent solutions for the future. There is also a declaration from the Ministry of Health, Labour and Welfare (MHLW), to develop new biomarker diagnostics, which is intended for patient stratification, aiding in diagnostic phenotype selection for responders to drug treatment of Japanese patients.This perspective was written by the panel in order to introduce novel technologies and diagnostic capabilities with successful implementation. The next generation of personalized drugs for targeted and stratified patient treatment will soon be available in major disease areas such as, lifestyle-related cancers, especially lung cancers with the highest mortality including a predisposing disorder chronic obstructive pulmonary disease, cardiovascular disease, and other diseases. Mass spectrometric technologies can provide the "phenotypic fingerprint" required for the concept of Personalized Medicine. Mass spectrometry-driven target biomarker diagnoses in combination with high resolution computed tomography can provide a critical pathway initiative facilitated by a fully integrated e-Health infrastructure system.We strongly recommend integrating validated biomarkers based on clinical proteomics, medical imaging with clinical care supported by e-Health model to support personalized treatment paradigms to reduce mortality and healthcare costs of chronic and co-morbid diseases in the elderly population of Japan. © 2011. Source


Nakazawa C.M.,Discovery | Shikata K.,Eisai Co. | Uesugi M.,Biomarkers and Personalized Medicine Core Function Unit | Katayama H.,Eisai Inc | And 10 more authors.
Journal of Receptors and Signal Transduction | Year: 2013

The effect of the intracerebroventricular (i.c.v.) injection of relaxin-3 (RLX3) was evaluated using anxiety-related behavioral tests in rats. RLX3-injected animals showed normal locomotion activity in a habituated environment and declined anxiety cognition in the elevated plus maze test and the shock probe-burying test. The measurement of spontaneous locomotor activity in a novel environment also suggested that RLX3 reduced the stress response. To elucidate the regulatory mechanisms of the downstream signaling pathways underlying RLX3 activity and its relation to anxiolytic and hyperphagic behavior phenotypes, RLX3-i.c.v.-injected rat hypothalamic responses were examined using a microarray analysis. Ingenuity Pathway Analysis software listed the phenotype-relating genes and they showed characteristic expression patterns in the rat hypothalamus. When peptidome data sets for the same listed genes was analyzed using a semi-quantitative approach, the expressions of two neuropeptides were found to have increased. One of these neuropeptides, oxytocin (Oxt), exhibited increased expression in both the microarray and the peptidomic analysis, and a Western blot analysis validated the mass spectrometry results. A cross-omics data analysis is useful for predicting downstream signaling pathways, and the anxiolytic-like behavior of RLX3 may be mediated by an oxytocin signaling pathway in rats. These results suggest that RLX3 acts as an anxiolytic peptide and that the downstream pathways mediated by its receptors may be potential candidates for the treatment of anxieties in the future. © 2013 Informa Healthcare USA, Inc. Source


Tokuhara N.,Chiba University | Tokuhara N.,Discovery Research | Namiki K.,Chiba University | Uesugi M.,Biomarkers and Personalized Medicine Core Function Unit | And 9 more authors.
Journal of Biological Chemistry | Year: 2010

One of the family of voltage-gated calcium channels (VGCC), the N-type Ca2+ channel, is located predominantly in neurons and is associated with a variety of neuronal responses, including neurodegeneration. A precise mechanism for how the N-type Ca2+ channel plays a role in neurodegenerative disease, however, is unknown. In this study, we immunized N-type Ca2+ channel α1B-deficient (α1B-/-) mice and their wild type (WT) littermates with myelin oligodendrocyte glycoprotein 35-55 and analyzed the progression of experimental autoimmune encephalomyelitis (EAE). The neurological symptoms of EAE in the α1B-/- mice were less severe than in the WT mice. In conjunction with these results, sections of the spinal cord (SC) from α1B-/- mice revealed a reduction in both leukocytic infiltration and demyelination compared with WT mice. No differences were observed in the delayed-type hypersensitivity response, spleen cell proliferation, or cytokine production from splenocytes between the two genotypes. On the other hand, Western blot array analysis and RT-PCR revealed that a typical increase in the expression of MCP-1 in the SC showed a good correlation with the infiltration of leukocytes into the SC. Likewise, immunohistochemical analysis showed that the predominant source of MCP-1 was activated microglia. The cytokine-induced production of MCP-1 in primary cultured microglia from WT mice was significantly higher than that from α1B-/- mice and was significantly inhibited by a selective N-type Ca2+ channel antagonist, ω-conotoxin GVIA or a withdrawal of extracellular Ca2+. These results suggest that the N-type Ca2+ channel is involved in the pathogenesis of EAE at least in part by regulating MCP-1 production by microglia. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Source

Discover hidden collaborations