Groningen, Netherlands
Groningen, Netherlands

Time filter

Source Type

Majchrzykiewicz J.A.,University of Groningen | Lubelski J.,University of Groningen | Moll G.N.,BiOMaDe Technology Foundation | Kuipers A.,BiOMaDe Technology Foundation | And 4 more authors.
Antimicrobial Agents and Chemotherapy | Year: 2010

Recent studies showed that the nisin modification machinery can successfully dehydrate serines and threonines and introduce lanthionine rings in small peptides that are fused to the nisin leader sequence. This opens up exciting possibilities to produce and engineer larger antimicrobial peptides in vivo. Here we demonstrate the exploitation of the class I nisin production machinery to generate, modify, and secrete biologically active, previously not-yet-isolated and -characterized class II two-component lantibiotics that have no sequence homology to nisin. The nisin synthesis machinery, composed of the modification enzymes NisB and NisC and the transporter NisT, was used to modify and secrete a putative two-component lantibiotic of Streptococcus pneumoniae. This was achieved by genetically fusing the propeptide-encoding sequences of the spr1765 (pneA1) and spr1766 (pneA2) genes to the nisin leader-encoding sequence. The chimeric prepeptides were secreted out of Lactococcus lactis, purified by cation exchange fast protein liquid chromatography, and further characterized. Mass spectrometry analyses demonstrated the presence and partial localization of multiple dehydrated serines and/or threonines and (methyl)lanthionines in both peptides. Moreover, after cleavage of the leader peptide from the prepeptides, both modified propeptides displayed antimicrobial activity against Micrococcus flavus. These results demonstrate that the nisin synthetase machinery can be successfully used to modify and produce otherwise difficult to obtain antimicrobially active lantibiotics. Copyright © 2010, American Society for Microbiology. All Rights Reserved.


Kocer A.,Biomade Technology Foundation | Kocer A.,University of Groningen | Tauk L.,Montpellier University | Dejardin P.,Montpellier University
Biosensors and Bioelectronics | Year: 2012

The use of nanopores of well controlled geometry for sensing molecules in solution is reviewed. Focus is concentrated especially on synthetic track-etch pores in polymer foils and on biological nanopores, i.e. ion channels. After a brief section about multipore sensors, specific attention is provided to works relative to a single nanopore sensor. The different strategies to combine the robustness of supports with the high selectivity of the biological channels are reviewed. The scope ranges from keeping the membrane natural environment of biological channels in supported and suspended bilayer membranes, to considering completely abiotic designed nanopores created through synthetic materials. The α-hemolysine channel and the mechanosensitive channel of large conductance with their modifications are especially considered in the first strategy, the conical functionalized nanopores created in polymer foils in the second one. The different attempts of reading macromolecules are also discussed. A third hybrid strategy, which was not extensively explored, consists in the inclusion of a biological structure into a well-designed nanopore through the support, as recently with gramicidin. © 2012 Elsevier B.V.


Kusters I.,University of Groningen | Mukherjee N.,University of Groningen | de Jong M.R.,BiOMaDe Technology Foundation | Tans S.,FOM Institute for Atomic and Molecular Physics | And 2 more authors.
PLoS ONE | Year: 2011

Single molecule studies on membrane proteins embedded in their native environment are hampered by the intrinsic difficulty of immobilizing elastic and sensitive biological membranes without interfering with protein activity. Here, we present hydrogels composed of nano-scaled fibers as a generally applicable tool to immobilize biological membrane vesicles of various size and lipid composition. Importantly, membrane proteins immobilized in the hydrogel as well as soluble proteins are fully active. The triggered opening of the mechanosensitive channel of large conductance (MscL) reconstituted in giant unilamellar vesicles (GUVs) was followed in time on single GUVs. Thus, kinetic studies of vectorial transport processes across biological membranes can be assessed on single, hydrogel immobilized, GUVs. Furthermore, protein translocation activity by the membrane embedded protein conducting channel of bacteria, SecYEG, in association with the soluble motor protein SecA was quantitatively assessed in bulk and at the single vesicle level in the hydrogel. This technique provides a new way to investigate membrane proteins in their native environment at the single molecule level by means of fluorescence microscopy. © 2011 Kusters et al.


Zampieri F.,University Utrecht | Zampieri F.,BiOMaDe Technology Foundation | Zampieri F.,University of Groningen | Wosten H.A.B.,University Utrecht | Scholtmeijer K.,University Utrecht
Materials | Year: 2010

Small secreted proteins called hydrophobins play diverse roles in the life cycle of filamentous fungi. For example, the hydrophobin SC3 of Schizophyllum commune is involved in aerial hyphae formation, cell-wall assembly and attachment to hydrophobic surfaces. Hydrophobins are capable of self-assembly at a hydrophilic-hydrophobic interface, resulting in the formation of an amphipathic film. This amphipathic film can make hydrophobic surfaces of a liquid or a solid material wettable, while a hydrophilic surface can be turned into a hydrophobic one. These properties, among others, make hydrophobins of interest for medical and technical applications. For instance, hydrophobins can be used to purify proteins from complex mixtures; to reduce the friction of materials; to increase the biocompatibility of medical implants; to increase the solubility of water insoluble drugs; and to immobilize enzymes, for example, biosensor surfaces. © 2010 by the authors.


Plat A.,BiOMaDe Technology Foundation | Kluskens L.D.,BiOMaDe Technology Foundation | Kluskens L.D.,University of Minho | Kuipers A.,BiOMaDe Technology Foundation | And 2 more authors.
Applied and Environmental Microbiology | Year: 2011

Nisin A is a pentacyclic peptide antibiotic produced by Lactococcus lactis. The leader peptide of prenisin keeps nisin inactive and has a role in inducing NisB- and NisC-catalyzed modifications of the propeptide and NisT-mediated export. The highly specific NisP cleaves off the leader peptide from fully modified and exported prenisin. We present here a detailed mutagenesis analysis of the nisin leader peptide. For alternative cleavage, we successfully introduced a putative NisP autocleavage site and sites for thrombin, enterokinase, Glu-C, and factor Xa in the C-terminal part of the leader peptide. Replacing residue F-18 with Trp or Thr strongly reduced production. On the other hand, D-19A, F-18H, F-18M, L-16D, L-16K, and L-16A enhanced production. Substitutions within and outside the FNLD box enhanced or reduced the transport efficiency. None of the above substitutions nor even an internal 6His tag from positions -13 to -8 had any effect on the capacity of the leader peptide to induce NisB and NisC modifications. Therefore, these data demonstrate a large mutational freedom. However, simultaneous replacement of the FNLD amino acids by four alanines strongly reduced export and even led to a complete loss of the capacity to induce modifications. Reducing the leader peptide to MSTKDFNLDLR led to 3- or 4-fold dehydration. Taken together, the FNLD box is crucial for inducing posttranslational modifications. © 2011, American Society for Microbiology.


Moll G.N.,BiOMaDe Technology Foundation | Kuipers A.,BiOMaDe Technology Foundation | Rink R.,BiOMaDe Technology Foundation
Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology | Year: 2010

This minireview focusses on the use of bacteria to introduce dehydroresidues and (methyl)lanthionines in (poly)peptides. It mainly describes the broad exploitation of bacteria containing lantibiotic enzymes for the engineering of these residues in a wide variety of peptides in particular in peptides unrelated to lantibiotics. Lantibiotic dehydratases dehydrate serines and threonines present in peptides preceded by a lantibiotic leader peptide thus forming dehydroalanine and dehydrobutyrine, respectively. These dehydroresidues can be coupled to cysteines thus forming (methyl)lanthionines. This coupling is catalysed by lantibiotic cyclases. The design, synthesis, and export of microbially engineered dehydroresidue and or lanthionine-containing peptides in non-lantibiotic peptides are reviewed, illustrated by some examples which demonstrate the high relevance of these special residues. This minireview is the first with special focus on the microbial engineering of nonlantibiotic peptides by exploiting lantibiotic enzymes. © 2010 Springer Science+Business Media B.V.


Nganou-Makamdop K.,Radboud University Nijmegen | Van Roosmalen M.L.,Mucosis BV | Audouy S.A.,BiOMaDe Technology Foundation | Van Gemert G.-J.,Radboud University Nijmegen | And 3 more authors.
Malaria Journal | Year: 2012

Background: Virus-like particles have been regularly used as an antigen delivery system for a number of Plasmodium peptides or proteins. The present study reports the immunogenicity and protective efficacy of bacterium-like particles (BLPs) generated from Lactococcus lactis and loaded with Plasmodium berghei circumsporozoite protein (PbCSP) peptides. Methods. A panel of BLP-PbCSP formulations differing in composition and quantity of B-cell, CD4+ and CD8+ T-cell epitopes of PbCSP were tested in BALB/c mice. Results: BLP-PbCSP1 induced specific humoral responses but no IFN- ELISPOT response, protecting 30-40% of the immunized mice. BLP-PbCSP2, with reduced length of the non-immunogenic part of the T-cell-epitopes construct, increased induction of IFN- responses as well as protection up to 60-70%. Compared to controls, lower parasitaemia was observed in unprotected mice immunized with BLP-PbCSP1 or 2, suggestive for partial immunity. Finally, further increase of the number of B-cell epitopes and codon optimization (BLP-PbCSP4) induced the highest anti-CSP antibody levels and number of IFN- spots, resulting in sterile immunity in 100% of the immunized mice. Conclusion: Presentation of Plasmodium-derived antigens using BLPs as a delivery system induced complete protection in a murine malaria model. Eventually, BLPs have the potential to be used as a novel versatile delivery platform in malaria vaccine development. © 2012 Nganou-Makamdop et al; licensee BioMed Central Ltd.


Vrouenraets M.,Biomade Technology Foundation | Miedema H.,Biomade Technology Foundation
European Biophysics Journal | Year: 2010

Understanding the flow of ions through E. coli porin outer membrane protein F (OmpF) requires knowledge of the charge state of all titratable residues located along the permeation pathway. Earlier theoretical studies proved successful in the calculation of the pK values of most residues. The (apparent) pK of Asp37 (D37), on the other hand, appeared rather sensitive to the (unknown) protein dielectric used. We addressed the protonation state of D37 experimentally by replacing D37 with a (neutral) valine. This D37V mutant expressed reduced cation selectivity, in agreement with the view that D37 in wild-type (WT) OmpF is fully ionized, i.e., deprotonated. The introduction of a (positively charged) arginine at position 37 evoked current fluctuations. Similar behavior was observed in the D37K mutant and the cysteine mutants D37C-MTSEA and D37C-MTSET. Nontitratable [2-(trimethylammonium)ethyl]- methanethiosulfonate (MTSET) carries a permanent and pH-independent charge of 1e, implying that the fluctuations of the D37C-MTSET mutant do not represent (de)protonation reactions of MTSET. We therefore conclude that these fluctuations reflect transitions between conformational substates evoked by structural instabilities due to the positive charge at that particular position in the pore lumen. Based on the similarities between D37C-MTSET fluctuations and those seen in the other mutants, notably D37K, the underlying mechanism of these fluctuations may be (essentially) the same in all four mutants studied. © 2010 European Biophysical Societies Association.


Plat A.,Biomade Technology Foundation | Kuipers A.,Lanthio Pharma | Rink R.,Lanthio Pharma | Moll G.N.,Lanthio Pharma
Current Protein and Peptide Science | Year: 2013

Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides produced by microorganisms. The name lanthipeptide is derived from lanthionine, a thioether-bridged amino acid installed by dedicated modification enzymes. Serines and threonines are dehydrated and subsequently coupled to cysteines, thus forming intramolecular lanthionine rings. A well-known subclass of lanthipeptides are lantibiotics: lanthipeptides with antimicrobial activity. The lantibiotic nisin is applied worldwide in the food industry to prevent food spoilage. This review focuses on lanthipeptide leader peptides, which have a crucial and central role in lanthipeptide biosynthesis. Lanthipeptide leader peptides are present at the N-terminus within precursor lanthipeptides. Intriguingly, a single leader peptide can interact with highly different modifying enzyme(s) (domains) and furthermore induce export out of the cell via a dedicated export protein. Eventually the leader peptide is cleaved off by a leader peptidase, either extracellularly or intracellularly as part of the transporter. Recent exciting mechanistic and engineering studies ignited the unraveling of the fascinating interactions of lanthipeptide leader peptides with the lanthipeptide modification enzymes and transporters. The biosynthesis of at least some lanthipeptides is performed by a highly flexible enzyme system. Novel lantibiotics can be synthesized by fusing lanthipeptide leader peptides to completely different silent lantibiotics obtained by genome mining. Moreover, the fusion of leader peptides to the N-terminus of medically and economically important therapeutic peptides has resulted in lanthioninestabilized therapeutics with enhanced bioavailability and optimized receptor interaction. © 2013 Bentham Science Publishers.


Haas Jimoh Akanbi M.,BioMaDe Technology Foundation | Post E.,BioMaDe Technology Foundation | Meter-Arkema A.,BioMaDe Technology Foundation | Rink R.,BioMaDe Technology Foundation | And 4 more authors.
Colloids and Surfaces B: Biointerfaces | Year: 2010

The poor water solubility of many drugs requires a specific formulation to achieve a sufficient bioavailability after oral administration. Suspensions of small drug particles can be used to improve the bioavailability. We here show that the fungal hydrophobin SC3 can be used to make suspensions of water insoluble drugs. Bioavailability of two of these drugs, nifedipine and cyclosporine A (CyA), was tested when administered as a SC3-based suspension. SC3 (in a 1:2 (w/w) drug:SC3 ratio) or 100% PEG400 increased the bioavailability of nifedipine to a similar degree (6 ± 2- and 4 ± 3-fold, respectively) compared to nifedipine powder without additives. Moreover, SC3 (in a 7:1 (w/w) drug:hydrophobin ratio) was as effective as a 20-fold diluted Neoral® formulation by increasing bioavailability of CyA 2.3 ± 0.3-fold compared to CyA in water. Interestingly, using SC3 in the CyA formulation resulted in a slower uptake (p < 0.001 in Tmax) of the drug, with a lower peak concentration (Cmax 1.8 mg ml-1) at a later time point (Tmax 9 ± 2 h) compared to Neoral® (Cmax 2.2 mg ml-1; Tmax 3.2 ± 0.2). Consequently, SC3 will result in a more constant, longer lasting drug level in the body. Taken together, hydrophobins are attractive candidates to formulate hydrophobic drugs. © 2009 Elsevier B.V. All rights reserved.

Loading BiOMaDe Technology Foundation collaborators
Loading BiOMaDe Technology Foundation collaborators