Entity

Time filter

Source Type


Ohira T.,Biology and Zoology Research Center Inc. | Ando R.,Biology and Zoology Research Center Inc. | Okada Y.,Japan National Institute of Health Sciences | Suzuki H.,Japan National Institute of Health Sciences | And 6 more authors.
Experimental and Toxicologic Pathology | Year: 2013

The sequence of neural progenitor cell (NPC) damage induced in fetal rat brain by transplacental exposure to busulfan, an antineoplastic bifunctional-alkylating agent, on gestational day 13 was examined by immunohistochemical and real-time RT-PCR analyses. Following busulfan treatment, pyknotic NPCs first appeared in the medial layer and then extended to the dorsal layer of the ventricular zone (VZ) of the telencephalon. Pyknotic NPCs that were immunohistochemically positive for cleaved caspase-3, i.e. apoptotic NPCs, began to increase at 24. h after treatment, peaked at 48. h, and returned to the control levels at 96. h. On the other hand, the index (%) of phospho-histone H3-positive NPCs, i.e. mitotic NPCs, and that of BrdU-positive NPCs, i.e. S-phase cells, decreased in accordance with the increase in the index of apoptotic NPCs. Prior to the peak time of apoptotic NPCs, the indices of p53- and p21-positive NPCs peaked at 36. h. In addition, the expression levels of p21 and Puma (p53-target genes) mRNAs were elevated in real-time RT-PCR analysis. These findings indicated that busulfan not only induced apoptosis through the p53-mediated intrinsic pathway but also inhibited cell proliferation in NPCs, resulting in a reduction of the width of the telencephalon. On the other hand, in spite of up-regulation of p21 expression, the expression of cyclin D1, part of the cell cycle machinery of the G1/S transition, and the expression levels of Cdc20 and cyclin B1 which are involved in G2/M transition, showed no changes, giving no possible information of busulfan-induced cell cycle arrest in NPCs. © 2012 Elsevier GmbH. Source


Ohira T.,Biology and Zoology Research Center Inc. | Ando R.,Biology and Zoology Research Center Inc. | Saito T.,Biology and Zoology Research Center Inc. | Yahata M.,Biology and Zoology Research Center Inc. | And 2 more authors.
Experimental and Toxicologic Pathology | Year: 2013

Busulfan, an antineoplastic bifunctional-alkylating agent, is known to induce developmental anomalies and fetal neurotoxicity. We previously reported that busulfan induced p53-dependent neural progenitor cell apoptosis in fetal rat brain (Ohira et al., 2012). The present study was carried out to clarify the characteristics and sequence of busulfan-induced pathological changes in infant rat brain. Six-day-old male infant rats were treated with 10, 20, 30 or 50. mg/kg of busulfan, and their brains were examined at 1, 2, 4, 7, and 14 days after treatment (DAT). As a result, histopathological changes were selectively detected in the external granular layer (EGL), deep cerebellar nuclei (DCN) and cerebellar white matter (CWM) in the cerebellum with dose-dependent severity but not in the cerebrum. In the normal infant rat cerebellum, granular cells in the EGL were proliferating and moving to the internal granular layer during the normal developmental process. In the EGL of the busulfan group, apoptotic granular cells increased at 2 DAT simultaneously with increased numbers of p53- and p21-positive cells while mitotic granular cells decreased, suggesting an occurrence of p53-related apoptosis and depression of proliferative activity in granular cells. In the DCN, apoptotic glial cells increased at 2 DAT and glial cells showing abnormal mitosis increased at 4 DAT. In the CWN, edematous change accompanying a few apoptotic cells was found in the CWN, especially in the parafolliculus (PFL), from 2 to 7 DAT. The present study demonstrated for the first time the characteristics and sequence of busulfan-induced pathological changes in infant rat cerebellum. © 2012 Elsevier GmbH. Source

Discover hidden collaborations