San Diego, CA, United States
San Diego, CA, United States

Time filter

Source Type

Cooper P.R.,Biologics Research | Perkinson R.A.,Biologics Research | Ragwan E.,Biologics Research | Mabus J.R.,Biologics Research | And 4 more authors.
Frontiers in Pharmacology | Year: 2014

The neonatal Fc receptor (FcRn) in intestinal epithelium is the primary mechanism for transfer of maternal immunoglobulin G (IgG) from suckled milk to serum; but the factors contributing to the rapid uptake of IgG are poorly understood. These studies help to determine the contribution of cell surface FcRn in IgG uptake in 2-week-old rat pups by varying local pH and binding conditions. Variants of a human wild-type (WT) IgG monoclonal antibody (mAb WT) were assessed for binding affinity (KD) to rat (r)FcRn at pH 6.0 and subsequent off-rate at pH 7.4 (1/s) by surface plasmon resonance. Selected mAbs were administered intra-intestinally in isoflurane-anesthetized 2-week rat pups. Full length mAb in serum was quantified by immunoassay, (r)FcRn mRNA expression by reverse transcription polymerase chain reaction, and mAb epithelial localization was visualized by immunohistochemistry. After duodenal administration, serum levels of mAb variants correlated with their rFcRn off-rate at pH 7.4, but not their affinity at pH 6.0. The greatest serum levels of IgG were measured when mAb was administered in the duodenum where rFcRn mRNA expression is greatest, and was increased further by duodenal administration in pH 6.0 buffer. More intense human IgG immunostaining was detected in epithelium than the same variant administered at higher pH. These data suggest an increased contribution for cell surface receptor. We conclude that, in the neonate duodenum, receptor off-rates are as important as affinities for FcRn mediated uptake, and cell surface binding of IgG to rFcRn plays contributes to IgG uptake alongside pinocytosis; both of which responsible for increased IgG uptake. © 2014 Cooper, Kliwinski, Perkinson, Ragwan, Mabus, Powers, Dorai, Giles-Komar and Hornby.


Zheng S.,Biologics Clinical Pharmacology | Moores S.,U.S. Biology Oncology | Jarantow S.,Biologics Research | Pardinas J.,Biologics Research | And 3 more authors.
mAbs | Year: 2016

abstract: Multispecific proteins, such as bispecific antibodies (BsAbs), that bind to two different ligands are becoming increasingly important therapeutic agents. Such BsAbs can exhibit markedly increased target binding and target residence time when both pharmacophores bind simultaneously to their targets. The cross-arm binding efficiency (χ) describes an increase in apparent affinity when a BsAb binds to the second target or receptor (R2) following its binding to the first target or receptor (R1) on the same cell. χ is an intrinsic characteristic of a BsAb mostly related to the binding epitopes on R1 and R2. χ can have significant impacts on the binding to R2 for BsAbs targeting two receptors on the same cell. JNJ-61186372, a BsAb that targets epidermal growth factor receptor (EGFR) and c-Met, was used as the model compound for establishing a method to characterize χ. The χ for JNJ-61186372 was successfully determined via fitting of in vitro cell binding data to a ligand binding model that incorporated χ. The model-derived χ value was used to predict the binding of JNJ-61186372 to individual EGFR and c-Met receptors on tumor cell lines, and the results agreed well with the observed IC50 for EGFR and c-Met phosphorylation inhibition by JNJ-61186372. Consistent with the model, JNJ-61186372 was shown to be more effective than the combination therapy of anti-EGFR and anti-c-Met monovalent antibodies at the same dose level in a mouse xenograft model. Our results showed that χ is an important characteristic of BsAbs, and should be considered for rationale design of BsAbs targeting two membrane bound targets on the same cell. © 2016 Jansenn R&D.


This knowledge could lead could lead to an improvement of those drugs, which are commonly used to treat autoimmune disorders and cancers, but are also associated with side effects like cardiovascular disease and hypertension. "Up to now, no one has known exactly how the thiopurine immunosuppressive process works," said Jongyun Heo, associate professor of chemistry and leader of the study published in the Journal of Biological Chemistry. "We are hoping that this discovery also creates an opportunity to improve thiopurine drugs and to design new chemotherapeutic agents for autoimmune disorders." The researchers showed that thiopurine drugs bond with Rac1 proteins within the immune system's T cells with a disulfide bond. This bond deactivates the protein and suppresses the cell's immune response. This new study also demonstrated that thiopurine can also form bonds with other proteins in T cells like RhoA, which is involved in vascular functions, and Cdc42, whose aberrant activation can result in cancerous growths. "It is now important to investigate whether thiopurine directly induces vascular or heart diseases through bonds with these other proteins, to alleviate potential cytotoxicities and side effects," Heo added. "There is also a potential opportunity to take advantage of this knowledge to develop new tools to fight cancer by stopping cancer metastasis by inactivating the proteins involved in cell proliferation." Heo's co-author on the paper was Jin-Young Shin of the Biologics Research Division of the National Institute of Food and Drug Safety Division of South Korea. The work was supported through a National Institutes of Health grant. The researchers used T cell-based oxidation reduction biochemistry approaches to examine the mechanistic features of thiopurine mediated Rac1 inactivation. These features, as explained in the diagram, detail a precise mechanism for this process. Fred MacDonnell, UTA chair of chemistry and biochemistry, underlined the importance of this research in the context of UTA's increasing focus on health and the human condition within the Strategic Plan 2020: Bold Solutions|Global Impact. "Large numbers of patients dependent on thiopurine drugs could potentially benefit from improvements in the drug or new drugs developed on the basis of this discovery," MacDonnell said. "Further research could also help improve our tools in the fight against cancer, which would be another important step forward." More information: Jin-Young Shin et al. Thiopurine Prodrugs Mediate Immunosuppressive Effects by Interfering with Rac1 Protein Function, Journal of Biological Chemistry (2016). DOI: 10.1074/jbc.M115.694422


Schaffner F.,Scripps Research Institute | Schaffner F.,University of Strasbourg | Yokota N.,Scripps Research Institute | Carneiro-Lobo T.,Scripps Research Institute | And 6 more authors.
PLoS ONE | Year: 2013

Several markers identify cancer stem cell-like populations, but little is known about the functional roles of stem cell surface receptors in tumor progression. Here, we show that the endothelial protein C receptor (EPCR), a stem cell marker in hematopoietic, neuronal and epithelial cells, is crucial for breast cancer growth in the orthotopic microenvironment of the mammary gland. Mice with a hypomorphic allele of EPCR show reduced tumor growth in the PyMT-model of spontaneous breast cancer development and deletion of EPCR in established PyMT tumor cells significantly attenuates transplanted tumor take and growth. We find expansion of EPCR+ cancer stem cell-like populations in aggressive, mammary fat pad-enhanced human triple negative breast cancer cells. In this model, EPCR-expressing cells have markedly increased mammosphere- and tumor-cell initiating activity compared to another stable progenitor-like subpopulation present at comparable frequency. We show that receptor blocking antibodies to EPCR specifically attenuate in vivo tumor growth initiated by either EPCR+ cells or the heterogenous mixture of EPCR+ and EPCR- cells. Furthermore, we have identified tumor associated macrophages as a major source for recognized ligands of EPCR, suggesting a novel mechanism by which cancer stem cell-like populations are regulated by innate immune cells in the tumor microenvironment. © 2013 Schaffner et al.


PubMed | Biologics Research and Immunology Discovery
Type: | Journal: Molecular immunology | Year: 2016

The cell-surface receptor ST2L triggers cytokine release by immune cells upon exposure to its ligand IL-33. To study the effect of ST2L-dependent signaling in different cell types, we generated antagonist antibodies that bind different receptor domains. We sought to characterize their activities in vitro using both transfected cells as well as basophil and mast cell lines that endogenously express the ST2L receptor. We found that antibodies binding Domain 1 versus Domain 3 of ST2L differentially impacted IL-33-induced cytokine release by mast cells but not the basophilic cell line. Analysis of gene expression in each cell type in the presence and absence of the Domain 1 and Domain 3 mAbs revealed distinct signaling pathways triggered in response to IL-33 as well as to each anti-ST2L antibody. We concluded that perturbing the ST2L/IL-33/IL-1RAcP complex using antibodies directed to different domains of ST2L have a cell-type-specific impact on cytokine release, and may indicate the association of additional receptors to the ST2L/IL-33/IL-1RAcP complex in mast cells.


Chiu M.L.,Biologics Research
Current Protocols in Protein Science | Year: 2012

Membrane proteins (MPs)mediate important physiological processes for the cell via extracellular and intracellular interactions. To better understand the biochemical and structural bases of these interactions, well-characterized preparations of purified MPs are required. This introduction reviews common problems encountered in MP preparation. © 2012 John Wiley & Sons, Inc.


Cieniewicz A.M.,Biologics Research | Cooper P.R.,Biologics Research | McGehee J.,Biologics Research | Lingham R.B.,Biologics Research | Kihm A.J.,Biologics Research
Cellular Signalling | Year: 2016

Insulin receptor signaling is a complex cascade leading to a multitude of intracellular functional responses. Three natural ligands, insulin, IGF1 and IGF2, are each capable of binding with different affinities to the insulin receptor, and result in variable biological responses. However, it is likely these affinity differences alone cannot completely explain the myriad of diverse cellular outcomes. Ligand binding initiates activation of a signaling cascade resulting in phosphorylation of the IR itself and other intracellular proteins. The direct catalytic activity along with the temporally coordinated assembly of signaling proteins is critical for insulin receptor signaling. We hypothesized that determining differential phosphorylation among individual tyrosine sites activated by ligand binding or dephosphorylation by phosphatases could provide valuable insight into insulin receptor signaling. Here, we present a sensitive, novel immunoassay adapted from Meso Scale Discovery technology to quantitatively measure changes in site-specific phosphorylation levels on endogenous insulin receptors from HuH7 cells. We identified insulin receptor phosphorylation patterns generated upon differential ligand activation and phosphatase-mediated deactivation. The data demonstrate that insulin, IGF1 and IGF2 elicit different insulin receptor phosphorylation kinetics and potencies that translate to downstream signaling. Furthermore, we show that insulin receptor deactivation, regulated by tyrosine phosphatases, occurs distinctively across specific tyrosine residues. In summary, we present a novel, quantitative and high-throughput assay that has uncovered differential ligand activation and site-specific deactivation of the insulin receptor. These results may help elucidate some of the insulin signaling mechanisms, discriminate ligand activity and contribute to a better understanding of insulin receptor signaling. We propose this methodology as a powerful approach to characterize agonists and antagonists of the insulin receptor and can be adapted to serve as a platform to evaluate ligands of alternate receptor systems. © 2016 Elsevier Inc.


Sarkar S.,University of Arizona | Justa S.,University of Arizona | Brucks M.,University of Arizona | Endres J.,University of Michigan | And 7 more authors.
Clinical and Experimental Immunology | Year: 2014

Interleukin (IL)-17 plays a critical role in inflammation. Most studies to date have elucidated the inflammatory role of IL-17A, often referred to as IL-17. IL-17F is a member of the IL-17 family bearing 50% homology to IL-17A and can also be present as heterodimer IL-17AF. This study elucidates the distribution and contribution of IL-17A, F and AF in inflammatory arthritis. Neutralizing antibody to IL-17A alone or IL-17F alone or in combination was utilized in the mouse collagen-induced arthritis (CIA) model to elucidate the contribution of each subtype in mediating inflammation. IL-17A, F and AF were all increased during inflammatory arthritis. Neutralization of IL-17A reduced the severity of arthritis, neutralization of IL-17A+IL-17F had the same effect as neutralizing IL-17A, while neutralization of IL-17F had no effect. Moreover, significantly higher levels of IL-17A and IL-17F were detected in peripheral blood mononuclear cells (PBMC) from patients with rheumatoid arthritis (RA) in comparison to patients with osteoarthritis (OA). IL-17A and AF were detected in synovial fluid mononuclear cells (SFMC) in RA and OA, with IL-17A being significantly higher in RA patients. Enriched CD3+ T cells from RA PBMCs produced singnificantly high levels of IL-17A and IL-17AF in comparison to OA peripheral blood CD3+ T cells. IL-17A, F and AF were undetectable in T cells from SFMCs from RA and OA. While IL-17A, F, and AF were all induced during CIA, IL-17A played a dominant role. Furthermore, production of IL-17A, and not IL-17F or IL-17AF, was elevated in PBMCs, SFMCs and enriched peripheral blood CD3+ T in RA. © 2014 The Authors.


PubMed | Biologics Research, Clinical science and Therapeutic Research Oncology
Type: Journal Article | Journal: Clinical cancer drugs | Year: 2016

Monoclonal antibodies have become attractive clinical anti-cancer drugs in the last 3 decades due to their targeting specificity and suitable pharmacokinetic properties. Mesothelin is a tumor-associated antigen with limited expression in normal tissues. It is frequently over-expressed on the cell membrane of a number of epithelial malignancies (e.g. mesothelioma, pancreatic, ovarian, lung, triple negative breast and gastric cancers).Mesothelin is validated as a suitable antibody target for cancer therapy. A number of novel antibody therapeutics targeting mesothelin in development are compared and their mechanisms of action are also discussed. Both basic science and clinical data are provided to give a complete veiw of how an agent is developed from bench to bedside.Novel antibody therapeutics, including unconjugated monoclonal antibodies, recombinant immunotoxins and antibody-drug conjugates, targeting mesothelin exert anti-tumor activities by different mechanisms of action. Based on the convincing preclinical data generated with these molecules, the antibody therapeutics have been brought into early clinical evaluation where initial promising results were obtained.These antibody therapeutics directed against mesothelin are expected to have different safety profiles, based on their different mechanism of action. Further clinical development will reveal which of these molecules shows the best efficacy and widest therapeutic window and thus is best suited to bring benefit to the patients.


Insulin receptor signaling is a complex cascade leading to a multitude of intracellular functional responses. Three natural ligands, insulin, IGF1 and IGF2, are each capable of binding with different affinities to the insulin receptor, and result in variable biological responses. However, it is likely these affinity differences alone cannot completely explain the myriad of diverse cellular outcomes. Ligand binding initiates activation of a signaling cascade resulting in phosphorylation of the IR itself and other intracellular proteins. The direct catalytic activity along with the temporally coordinated assembly of signaling proteins is critical for insulin receptor signaling. We hypothesized that determining differential phosphorylation among individual tyrosine sites activated by ligand binding or dephosphorylation by phosphatases could provide valuable insight into insulin receptor signaling. Here, we present a sensitive, novel immunoassay adapted from Meso Scale Discovery technology to quantitatively measure changes in site-specific phosphorylation levels on endogenous insulin receptors from HuH7 cells. We identified insulin receptor phosphorylation patterns generated upon differential ligand activation and phosphatase-mediated deactivation. The data demonstrate that insulin, IGF1 and IGF2 elicit different insulin receptor phosphorylation kinetics and potencies that translate to downstream signaling. Furthermore, we show that insulin receptor deactivation, regulated by tyrosine phosphatases, occurs distinctively across specific tyrosine residues. In summary, we present a novel, quantitative and high-throughput assay that has uncovered differential ligand activation and site-specific deactivation of the insulin receptor. These results may help elucidate some of the insulin signaling mechanisms, discriminate ligand activity and contribute to a better understanding of insulin receptor signaling. We propose this methodology as a powerful approach to characterize agonists and antagonists of the insulin receptor and can be adapted to serve as a platform to evaluate ligands of alternate receptor systems.

Loading Biologics Research collaborators
Loading Biologics Research collaborators