Madrid, Spain
Madrid, Spain

Time filter

Source Type

Abia D.,Bioinformatics Unit
Immunology Letters | Year: 2014

Although the T cell antigen receptor (TCR) is long known to contain multiple signaling subunits (CD3γ, CD3δ, CD3e{open} and CD3ζ), their role in signal transduction is still not well understood. The presence of at least one immunoreceptor tyrosine-based activation motif (ITAM) in each CD3 subunit has led to the idea that the multiplication of such elements essentially serves to amplify signals. However, the evolutionary conservation of non-ITAM sequences suggests that each CD3 subunit is likely to have specific non-redundant roles at some stage of development or in mature T cell function. The CD3e{open} subunit is paradigmatic because in a relatively short cytoplasmic sequence (~55 amino acids) it contains several docking sites for proteins involved in intracellular trafficking and signaling, proteins whose relevance in T cell activation is slowly starting to be revealed. In this review we will summarize our current knowledge on the signaling effectors that bind directly to the TCR and we will propose a hierarchy in their response to TCR triggering. © 2014 Elsevier B.V.


Munoz-Espin D.,Tumor Suppression Group | Canamero M.,Histopathology Unit | Maraver A.,Tumor Suppression Group | Gomez-Lopez G.,Bioinformatics Unit | And 12 more authors.
Cell | Year: 2013

Cellular senescence disables proliferation in damaged cells, and it is relevant for cancer and aging. Here, we show that senescence occurs during mammalian embryonic development at multiple locations, including the mesonephros and the endolymphatic sac of the inner ear, which we have analyzed in detail. Mechanistically, senescence in both structures is strictly dependent on p21, but independent of DNA damage, p53, or other cell-cycle inhibitors, and it is regulated by the TGF-β/SMAD and PI3K/FOXO pathways. Developmentally programmed senescence is followed by macrophage infiltration, clearance of senescent cells, and tissue remodeling. Loss of senescence due to the absence of p21 is partially compensated by apoptosis but still results in detectable developmental abnormalities. Importantly, the mesonephros and endolymphatic sac of human embryos also show evidence of senescence. We conclude that the role of developmentally programmed senescence is to promote tissue remodeling and propose that this is the evolutionary origin of damage-induced senescence. © 2013 Elsevier Inc.


Santos C.S.,Catholic University of Portugal | Pinheiro M.,Bioinformatics Unit | Silva A.I.,Catholic University of Portugal | Egas C.,Advanced Services Unit | Vasconcelos M.W.,Catholic University of Portugal
BMC Genomics | Year: 2012

Background: Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant's molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN).Results: Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species.Conclusions: Defense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD. © 2012 Santos et al.; licensee BioMed Central Ltd.


Carro A.,Bioinformatics Unit | Rico D.,Structural Computational Biology Group | Rueda O.M.,Cancer Research UK | Diaz-Uriarte R.,Structural Computational Biology Group | Pisano D.G.,Bioinformatics Unit
Nucleic Acids Research | Year: 2010

waviCGH is a versatile web server for the analysis and comparison of genomic copy number alterations in multiple samples from any species. waviCGH processes data generated by high density SNP-arrays, array-CGH or copy-number calls generated by any technique. waviCGH includes methods for pre-processing of the data, segmentation, calling of gains and losses, and minimal common regions determination over a set of experiments. The server is a user-friendly interface to the analytical methods, with emphasis on results visualization in a genomic context. Analysis tools are introduced to the user as the different steps to follow in an experimental protocol. All the analysis steps generate high quality images and tables ready to be imported into spreadsheet programs. Additionally, for human, mouse and rat, altered regions are represented in a biological context by mapping them into chromosomes in an integrated cytogenetic browser. waviCGH is available at http://wavi.bioinfo.cnio.es. © The Author(s) 2010. Published by Oxford University Press.


Rodriguez J.M.,Spanish National Bioinformatics Institute INB | Carro A.,Bioinformatics Unit | Valencia A.,Spanish National Bioinformatics Institute INB | Tress M.L.,Spanish National Cancer Research Center
Nucleic acids research | Year: 2015

This paper introduces the APPRIS WebServer (http://appris.bioinfo.cnio.es) and WebServices (http://apprisws.bioinfo.cnio.es). Both the web servers and the web services are based around the APPRIS Database, a database that presently houses annotations of splice isoforms for five different vertebrate genomes. The APPRIS WebServer and WebServices provide access to the computational methods implemented in the APPRIS Database, while the APPRIS WebServices also allows retrieval of the annotations. The APPRIS WebServer and WebServices annotate splice isoforms with protein structural and functional features, and with data from cross-species alignments. In addition they can use the annotations of structure, function and conservation to select a single reference isoform for each protein-coding gene (the principal protein isoform). APPRIS principal isoforms have been shown to agree overwhelmingly with the main protein isoform detected in proteomics experiments. The APPRIS WebServer allows for the annotation of splice isoforms for individual genes, and provides a range of visual representations and tools to allow researchers to identify the likely effect of splicing events. The APPRIS WebServices permit users to generate annotations automatically in high throughput mode and to interrogate the annotations in the APPRIS Database. The APPRIS WebServices have been implemented using REST architecture to be flexible, modular and automatic. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.


Cuadrado A.,Chromosome Dynamics Group | Remeseiro S.,Chromosome Dynamics Group | Remeseiro S.,European Molecular Biology Laboratory | Grana O.,Bioinformatics Unit | And 2 more authors.
Nucleic Acids Research | Year: 2015

Cohesin, which in somatic vertebrate cells consists of SMC1, SMC3, RAD21 and either SA1 or SA2, mediates higher-order chromatin organization. To determine how cohesin contributes to the establishment of tissue-specific transcriptional programs, we compared genome-wide cohesin distribution, gene expression and chromatin architecture in cerebral cortex and pancreas from adult mice. More than one third of cohesin binding sites differ between the two tissues and these show reduced overlap with CCCTC-binding factor (CTCF) and are enriched at the regulatory regions of tissue-specific genes. Cohesin/CTCF sites at active enhancers and promoters contain, at least, cohesin-SA1. Analyses of chromatin contacts at the Protocadherin (Pcdh) and Regenerating islet-derived (Reg) gene clusters, mostly expressed in brain and pancreas, respectively, revealed remarkable differences that correlate with the presence of cohesin. We could not detect significant changes in the chromatin contacts at the Pcdh locus when comparing brains from wild-type and SA1 null embryos. In contrast, reduced dosage of SA1 altered the architecture of the Reg locus and decreased the expression of Reg genes in the pancreas of SA1 heterozygous mice. Given the role of Reg proteins in inflammation, such reduction may contribute to the increased incidence of pancreatic cancer observed in these animals. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.


Villasante A.,Tumour Suppression Group | Piazzolla D.,Tumour Suppression Group | Li H.,Tumour Suppression Group | Gomez-Lopez G.,Bioinformatics Unit | And 2 more authors.
Cell Cycle | Year: 2011

Nanog levels in pluripotent stem cells are heterogeneous and reflect two different and interchangeable cell states, respectively poised to self-renew (Nanog-high subpopulation) or to differentiate (Nanog-low subpopulation). However, little is known about the mechanisms responsible for this pattern of Nanog expression. Here, we have examined the impact of the histone methyltransferase Ezh2 on pluripotent stem cells and on Nanog expression. Interestingly, induced pluripotent stem (iPS) cells lacking Ezh2 presented higher levels of Nanog due to a relative expansion of the Nanog-high subpopulation, and this was associated to severe defects in differentiation. Moreover, we found that the Nanog promoter in embryonic stem (ES) cells and iPS cells coexists in two univalent chromatin configurations, one characterized by H3K4me3 and the other by H3K27me3, being the latter dependent on the presence of functional Ezh2. Finally, the levels of expression of Ezh2, as well as the amount of H3K27me3 present at the Nanog promoter, were higher in the Nanog-low subpopulation of ES/iPS cells. together, these data indicate that Ezh2 directly regulates the epigenetic status of the Nanog promoter affecting the balance of Nanog expression in pluripotent stem cells and, therefore, the equilibrium between self-renewal and differentiation. © 2011 Landes Bioscience.


Remeseiro S.,Chromosome Dynamics Group | Cuadrado A.,Chromosome Dynamics Group | Gomez-Lapez G.,Bioinformatics Unit | Pisano D.G.,Bioinformatics Unit | Losada A.,Chromosome Dynamics Group
EMBO Journal | Year: 2012

Vertebrates have two cohesin complexes that consist of Smc1, Smc3, Rad21/Scc1 and either SA1 or SA2, but their functional specificity is unclear. Mouse embryos lacking SA1 show developmental delay and die before birth. Comparison of the genome-wide distribution of cohesin in wild-type and SA1-null cells reveals that SA1 is largely responsible for cohesin accumulation at promoters and at sites bound by the insulator protein CTCF. As a consequence, ablation of SA1 alters transcription of genes involved in biological processes related to Cornelia de Lange syndrome (CdLS), a genetic disorder linked to dysfunction of cohesin. We show that the presence of cohesin-SA1 at the promoter of myc and of protocadherin genes positively regulates their expression, a task that cannot be assumed by cohesin-SA2. Lack of SA1 also alters cohesin-binding pattern along some gene clusters and leads to dysregulation of genes within. We hypothesize that impaired cohesin-SA1 function in gene expression underlies the molecular aetiology of CdLS. © 2012 European Molecular Biology Organization | All Rights Reserved.


Lopez-Huertas M.R.,Institute Salud Carlos III | Callejas S.,Genomics Unit | Abia D.,Bioinformatics Unit | Mateos E.,Institute Salud Carlos III | And 3 more authors.
Nucleic Acids Research | Year: 2010

The human immunodeficiency virus type 1 (HIV-1) regulator Tat is essential for viral replication because it achieves complete elongation of viral transcripts. Tat can be released to the extracellular space and taken up by adjacent cells, exerting profound cytoskeleton rearrangements that lead to apoptosis. In contrast, intracellular Tat has been described as protector from apoptosis. Tat gene is composed by two coding exons that yield a protein of 101 amino acids (aa). First exon (1-72aa) is sufficient for viral transcript elongation and second exon (73-101 aa) appears to contribute to non-transcriptional functions. We observed that Jurkat cells stably expressing intracellular Tat101 showed gene expression deregulation 4-fold higher than cells expressing Tat72. Functional experiments were performed to evaluate the effect of this deregulation. First, NF-iB-, NF-AT- and Sp1-dependent transcriptional activities were greatly enhanced in Jurkat-Tat101, whereas Tat72 induced milder but efficient activation. Second, cytoskeleton-related functions as cell morphology, proliferation, chemotaxis, polarization and actin polymerization were deeply altered in Jurkat-Tat101, but not in Jurkat-Tat72. Finally, expression of several cell surface receptors was dramatically impaired by intracellular Tat101 but not by Tat72. Consequently, these modifications were greatly dependent on Tat second exon and they could be related to the anergy observed in HIV-1-infected T cells. © The Author(s) 2010. Published by Oxford University Press.


Cuadrado A.,Chromosome Dynamics Group | Remeseiro S.,Chromosome Dynamics Group | Gomez-Lopez G.,Bioinformatics Unit | Pisano D.G.,Bioinformatics Unit | Losada A.,Chromosome Dynamics Group
Cell Cycle | Year: 2012

Besides its well-established role in sister chromatid cohesion, cohesin has recently emerged as major player in the organization of interphase chromatin. Such important function is related to its ability to entrap two DNA segments also in cis, thereby facilitating long-range DNA looping which is crucial for transcriptional regulation, organization of replication factories and V(D)J recombination. Vertebrate somatic cells have two different versions of cohesin, containing Smc1, Smc3, Rad21/Scc1 and either SA1 or SA2, but their functional specificity has been largely ignored. We recently generated a knockout mouse model for the gene encoding SA1, and found that this protein is essential to complete embryonic development. Cohesin-SA1 mediates cohesion at telomeres, which is required for their replication. Telomere defects in SA1-deficient cells provoke chromosome segregation errors resulting in aneuploidy despite robust centromere cohesion. This aneuploidy could explain why heterozygous animals have an earlier onset of tumorigenesis. In addition, the genome-wide distribution of cohesin changes dramatically in the absence of SA1, and the complex shows reduced accumulation at promoters and CTCF sites. As a consequence, gene expression is altered, leading to downregulation of biological processes related to a developmental disorder linked to cohesin function, the Cornelia de Lange Syndrome (CdLS). These results point out a prominent role of cohesin-SA1 in transcriptional regulation, with clear implications in the etiology of CdLS. © 2012 Landes Bioscience.

Loading Bioinformatics Unit collaborators
Loading Bioinformatics Unit collaborators