Time filter

Source Type

Lucknow, India

Singh V.,Genopole | Somvanshi P.,Bioinformatics Center
Protein and Peptide Letters | Year: 2010

DNA ligase is an important enzyme and it plays vital role in the replication and repair; also catalyzes nick joining between adjacent bases of DNA. The NAD+ dependent DNA ligase is selectively present in eubacteria and few viruses; but missing in humans. Homology modeling was used to generate 3-D structure of NAD+ dependent DNA ligase (LigA) of Mycobacterium tuberculosis using the known template (PDB: 2OWO). Furthermore, the stereochemical quality and torsion angle of 3-D structure was validated. Numerous effective drugs were selected and the active amino acid residue in LigA was targeted and virtual screening through molecular docking was done. In this analysis, four drugs Chloroquine, Hydroxychloroquine, Putrienscine and Adriamycin were found more potent in inhibition of M. tuberculosis through the robust binding affinity between protein-drug interactions in comparison with the other studied drugs. A phylogenetic tree was constructed and it was observed that homology of LigA in M. tuberculosis resembled with other Mycobacterium species. The conserved active amino acids of LigA may be useful to target these drugs. These findings could be used as the starting point of a rational design of novel antibacterial drugs and its analogs. © 2010 Bentham Science Publishers Ltd.

Shipra G.,Bioinformatics Center
Protein and peptide letters | Year: 2012

Bcl-xL protein belongs to BCL-2 family which has either pro- or anti-apoptotic activities owing to their importance in the regulation of apoptosis, tumor genesis and cellular responses to anti-cancer therapy. Bcl-xL permeabilize the outer mitochondrial membrane of cells and inhibit these processes. Protein-inhibitor interactions play an important role in regulating the expression of Bcl-xL protein. Here, we report the docking studies that resulted in the identification of new inhibitors distinct from the previously reported inhibitor against this protein. The results have been validated using Sybyl surflux docking. New potent inhibitors from docking analysis are pentacyclic triterpenoid derivative (2S,4aR,6aR, 6bS,8aS,10R,12R,12aS,12bR,14bR,E)-10,12-dihydroxy-2,4a,14b-trimethyl-9-((((R)-3,4,5-trihydroxy-6-methyl-2H-pyran- 2-yl)oxy)methylene)-1,2,3,4,4a,5,6,6a,6b,8a,9,10,11,12,12a,12b,13,14b-octadecahydropicene-2-car-boxylic acid and 4- alkyl-4-methoxypiperidine derivative 8h (where R= 4-Cl-Ph) that promotes the release of pro-apoptotic proteins from the mitochondria which is a key event in cell death signaling. The compounds form stable complex with protein exhibiting highest binding affinity and Gibbs free energy. Pentacyclic triterpenoid derivatives compound-201 and piperidine derivative compound-39 are potent inhibitors with Ki value of 172.62nM and 175.24 nM high affinity and inhibitory potency. Salt bridge, pi-pi and hydrogen bonding interactions predominantly contribute towards the stability of the complexes. These compounds can further be exploited for their potential to enhance apoptosis. We have established the correlation between the experimental Ki value with our computational inhibition constant. The quantitative predictions in this study provide a scope for further experimental testing giving structural insights into the design and development of novel anticancer drugs.

Zhang Z.,Fudan University | Wang B.,Bioinformatics Center | Wan B.,Fudan University | Yu L.,Fudan University | Huang Q.,Fudan University
Biochemical and Biophysical Research Communications | Year: 2013

HIV-1 integrase (IN) plays an important role in integrating viral DNA into human genome, which has been considered as the drug target for anti-AIDS therapy. The appearance of drug-resistance mutants urgently requires novel inhibitors that act on non-active site of HIV-1 IN. Nanoparticles have such unique geometrical and chemical properties, which inspires us that nanoparticles like nanotubes may serve as better HIV-1 IN inhibitors than the conventional inhibitors. To test this hypothesis, we performed molecular dynamics (MD) simulation to study the binding of a carbon nanotube (CNT) to a full-length HIV-1 IN. The results showed that the CNT could stably bind to the C-terminal domain (CTD) of HIV-1 IN. The CNT also induced a domain-shift which disrupted the binding channel for viral DNA. Further MD simulation showed that a HIV-1 IN inhibitor, 5ClTEP was successfully sealed inside the uncapped CNT. These results indicate that the CNT may serve as a potential dual-functional HIV-1 IN inhibitor, not only inducing conformation change as an allosteric inhibitor but also carrying small-molecular inhibitors as a drug delivery system. © 2013 Elsevier Inc.

Singh V.,Genopole | Mani I.,Banaras Hindu University | Chaudhary D.K.,National Bureau of Fish Genetic Resources | Somvanshi P.,Bioinformatics Center
Current Medicinal Chemistry | Year: 2011

The continuous preventive measures and control of tuberculosis are often hampered by re-emergence of multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis. A novel drug approach is desperately needed to combat the global threat posed by MDR strains. In spite of current advancement in biological techniques viz. microarray and proteomics data for tuberculosis, no such potent drug has been developed in the past decades yet. Therefore, mycolic acid is an essential constituent which is involved in the formation of cell wall of Mycobacterium species. The biosynthesis of mycolic acid is involved in two fatty acid synthase systems, the multifunctional polypeptide fatty acid synthase I (FASI) which performs de novo fatty acid synthesis and dissociate FASII system. FASII system consists of monofunctional enzymes and acyl carrier protein (ACP), elongating FASI products to long chain mycolic acid precursor. In this review, the β-ketoacyl-ACP synthases (fadH, kasA and kasB) are distinct and play a vital role in mycolic acid synthesis, cell wall synthesis, biofilm formation and also pathogenesis. On the basis of substantial observation we suggest that these enzymes may be used as promising and attractive targets for novel anti-TB drugs designing and discovery. © 2011 Bentham Science Publishers Ltd.

Vijayalakshmi P.,Bioinformatics Center | Daisy P.,Bioinformatics Center
Journal of Receptors and Signal Transduction | Year: 2015

Staphylococcus aureus has been recognized as an important human pathogen for more than 100 years. It is among the most important causative agent of human infections in the twenty-first century. DNA ligase is the main protein responsible for the replication of S. aureus. In order to control the replication mechanism, DNA ligase is a successive drug target, hence we have chosen this protein for this study. We performed virtual screening using ZINC database for identification of potent inhibitor against DNA ligase. Based on the scoring methods, we have selected best five compounds from the ZINC database. In order to improve the accuracy, selected compounds were subjected into Quantum Polarized Ligand Docking (QPLD) docking, for which the results showed high docking score, compared to glide docking score. QPLD is more accurate as it includes charges in the scoring function, which was not available in the glide docking. Binding energy calculation results also indicated that selected compounds have good binding capacity with the target protein. In addition, these compounds on screening have good absorption, distribution, metabolism, excretion and toxicity property. In this study, we identified few compounds that particularly work against DNA ligase protein, having better interaction phenomenon and it would help further the experimental analysis. © 2014 Informa Healthcare USA, Inc. All rights reserved.

Discover hidden collaborations