Entity

Time filter

Source Type


Dos Santos A.E.,Federal University of Rio de Janeiro | Kuster R.M.,Federal University of Rio de Janeiro | Yamamoto K.A.,Federal University of Rio de Janeiro | Salles T.S.,Federal University of Rio de Janeiro | And 5 more authors.
Parasites and Vectors | Year: 2014

Background: The arthropod-borne Mayaro virus (MAYV) causes 'Mayaro fever', a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Recently, MAYV has attracted attention due to its likely urbanization. Currently, there are no licensed drugs against most mosquito-transmitted viruses. Here, we investigated the in vitro anti-MAYV activity of the flavonoids quercetin and its derivatives from the Brazilian shrub Bauhinia longifolia (Bong.) Steud. Methods. Flavonoids were purified by chromatographic fractionation from leaf extracts of B. longifolia and chemically identified as quercetin and quercetin glycosides using spectroscopic techniques. Cytotoxicity of purified flavonoids and of EtOAc- and n-BuOH-containing flavonoid mixtures was measured by the dye-uptake assay while their antiviral activity was evaluated by a virus yield inhibition assay. Results: The following flavonoids were purified from B. longifolia leaves: non-glycosylated quercetin and its glycosides guaijaverin, quercitrin, isoquercitrin, and hyperin. EtOAc and n-BuOH fractions containing these flavonoids demonstrated the highest antiviral activity of all tested substances, while quercetin had the highest antiviral activity amongst purified flavonoids. Quercetin, EtOAc, or n-BuOH fractions inhibited MAYV production by more than 90% at 25 μg/mL, displaying a stronger antiviral effect than the licensed antiviral ribavirin. A mixture of the isomers isoquercitrin and hyperin had a modest antiviral effect (IC90 = 104.9), while guaijaverin and quercitrin did not show significant antiviral activity. Conclusions: B. longifolia is a good source of flavonoids with anti-Mayaro virus activity. This is the first report of the activity of quercetin and its derivatives against an alphavirus. © 2014 dos Santos et al.; licensee BioMed Central Ltd. Source


Kong K.V.,Bioimaging Science and Technology | Dinish U.S.,Bioimaging Science and Technology | Lau W.K.O.,Singapore General Hospital | Olivo M.,Bioimaging Science and Technology | And 2 more authors.
Biosensors and Bioelectronics | Year: 2014

Conventional nanoparticle based Surface enhanced Raman scattering (SERS) technique for pH sensing often fails due to the aggregation of particles when detecting in acidic medium or biosamples having high ionic strength. Here, We develop SERS based pH sensing using a novel Raman reporter, arene chromium tricarbonyl linked aminothiophenol (Cr(CO)3-ATP), functionalized onto a nano-roughened planar substrates coated with gold. Unlike the SERS spectrum of the ATP molecule that dominates in the 400-1700cm-1 region, which is highly interfered by bio-molecules signals, metal carbonyl-ATP (Cr(CO)3)-ATP) offers the advantage of monitoring the pH dependent strong CO stretching vibrations in the mid-IR (1800-2200cm-1) range. Raman signal of the CO stretching vibrations at ~1820cm-1 has strong dependency on the pH value of the environment, where its peak undergo noticeable shift as the pH of the medium is varied from 3.0 to 9.0. The sensor showed better sensitivity in the acidic range of the pH. We also demonstrate the pH sensing in a urine sample, which has high ionic strength and our data closely correlate to the value obtained from conventional sensor. In future, this study may lead to a sensitive chip based pH sensing platform in bio-fluids for the early diagnosis of diseases.© 2013 Elsevier B.V. Source


Gustavsson N.,Bioimaging Science and Technology | Wang X.,Bioimaging Science and Technology | Wang Y.,Bioimaging Science and Technology | Seah T.,Bioimaging Science and Technology | And 5 more authors.
PLoS ONE | Year: 2010

Background:Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. Methodology/Principal Findings: In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. Conclusions:Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic b-cells. © 2010 Gustavsson et al. Source


Goh D.,Bioimaging Science and Technology | Gong T.,Nanyang Technological University | Dinish U.S.,Bioimaging Science and Technology | Maiti K.K.,Bioimaging Science and Technology | And 4 more authors.
Plasmonics | Year: 2012

Gold nanorods (GNR) are synthesized using cetylmethylammonium bromide (CTAB) surfactants which function as structure-directing agents. However, CTAB forms a tightly bound cationic bilayer on GNR surface with the cationic trimethylammonium head group exposed to the aqueous media, which is known to be highly toxic in vitro and in vivo. Pluronic is a non-ionic triblock polymer, which can associate with CTAB and form stable CTAB-polymer complexes due to hydrophobic interactions. In this work, two types of Pluronic triblock copolymers were used to encapsulate GNR to reduce their cytotoxicity and improve colloidal and optical stability for biological applications. These formulations were characterized by UV-vis absorption spectra analysis, transmission electron microscopy, cell viability studies, differential interference contrast microscopy and dark-field imaging. © 2012 Springer Science+Business Media, LLC. Source


Gong T.,Nanyang Technological University | Gong T.,Bioimaging Science and Technology | Voon Kong K.,Bioimaging Science and Technology | Goh D.,Bioimaging Science and Technology | And 3 more authors.
Biomedical Optics Express | Year: 2015

A surface enhanced Raman spectroscopy (SERS) based platform was developed for sensitive multiplexed detection of matrix metalloproteinases (MMP) (MMP-2 and MMP-7) with low limit of detection and high specificity. Detection is based on the virtue of enzymatic reaction where a peptide can be cleaved only by its corresponding enzyme. The platform comprises two components, a specialized SERS-based bimetallic-film-over-nanosphere (BMFON) substrate and gold nanoparticles (AuNPs). The two components were functionalized such that binding between the two would occur through biotin-avidin-biotin complexation. Binding is hindered by MMP peptide chains conjugated onto the surfaces of the substrate and AuNPs, and can be removed only by cleaving the peptide chains with corresponding enzymes. Since AuNP binding sites become free after the peptides are cleaved, the number of binding sites for AuNPs onto the substrate would increase. By tagging the AuNPs, concentrations of MMP-specific enzymes can be quantified through examining intensities of signature SERS peaks of the tags. This cleave-and-bind mechanism was first validated by individual detection and quantification of MMP-2 and MMP-7. The platform was demonstrated to be able to sensitively detect concentrations of specific enzymes ranging from 1 ng/mL to 40 μg/mL, with close correlation between SERS intensity and concentrations. Finally, the multiplexed detection of MMP-2 and MMP-7 was demonstrated. The multiplexity of this platform provides a robust way to analyze diseases associated with MMP-2 and MMP-7 enzymes. Our work can be further developed as a clinical diagnostic tool to detect other MMP proteinase in bio-fluids samples, widening the number of biomarkers needed to characterize diseases better. © 2015 Optical Society of America. Source

Discover hidden collaborations