Time filter

Source Type

Cambridge, MA, United States

Pollock J.,University College London | Bolton G.,Pfizer | Bolton G.,BiogenIdec Inc. | Coffman J.,Pfizer | And 3 more authors.
Journal of Chromatography A | Year: 2013

This paper presents an integrated experimental and modelling approach to evaluate the potential of semi-continuous chromatography for the capture of monoclonal antibodies (mAb) in clinical and commercial manufacture. Small-scale single-column experimental breakthrough studies were used to derive design equations for the semi-continuous affinity chromatography system. Verification runs with the semi-continuous 3-column and 4-column periodic counter current (PCC) chromatography system indicated the robustness of the design approach. The product quality profiles and step yields (after wash step optimisation) achieved were comparable to the standard batch process. The experimentally-derived design equations were incorporated into a decisional tool comprising dynamic simulation, process economics and sizing optimisation. The decisional tool was used to evaluate the economic and operational feasibility of whole mAb bioprocesses employing PCC affinity capture chromatography versus standard batch chromatography across a product's lifecycle from clinical to commercial manufacture. The tool predicted that PCC capture chromatography would offer more significant savings in direct costs for early-stage clinical manufacture (proof-of-concept) (~30%) than for late-stage clinical (~10-15%) or commercial (~5%) manufacture. The evaluation also highlighted the potential facility fit issues that could arise with a capture resin (MabSelect) that experiences losses in binding capacity when operated in continuous mode over lengthy commercial campaigns. Consequently, the analysis explored the scenario of adopting the PCC system for clinical manufacture and switching to the standard batch process following product launch. The tool determined the PCC system design required to operate at commercial scale without facility fit issues and with similar costs to the standard batch process whilst pursuing a process change application. A retrofitting analysis established that the direct cost savings obtained by 8 proof-of-concept batches would be sufficient to pay back the investment cost of the pilot-scale semi-continuous chromatography system. © 2013 Elsevier B.V.

Martinez-Paniagua M.A.,University of California at Los Angeles | Vega M.I.,University of California at Los Angeles | Huerta-Yepez S.,University of California at Los Angeles | Baritaki S.,University of California at Los Angeles | And 2 more authors.
Molecular Cancer Therapeutics | Year: 2012

Galiximab (anti-CD80 monoclonal antibody) is a primatized (human IgG1 constant regions and cynomologus macaque variable regions) monoclonal antibody that is currently in clinical trials. Galiximab inhibits tumor cell proliferation through possibly cell signaling-mediated effects. Thus, we hypothesized that galiximab may signal the tumor cells and modify intracellular survival/antiapoptotic pathways such as the NF-κB pathway. This hypothesis was tested using various CD80 + Burkitt B-NHL (non-Hodgkin lymphomas) cell lines as models. Treatment of B-NHL cells with galiximab (25-100 μg/mL) resulted in significant inhibition of NF-κB activity and its target resistant factors such as YY1, Snail, and Bcl-2/Bcl-XL. Treatment of B-NHL cells with galiximab sensitized the tumor cells to both cis- diamminedichloroplatinum(II) (CDDP)- and TRAIL-induced apoptosis. The important roles of YY1- and Snail-induced inhibition by galiximab in the sensitization to CCDP and TRAIL were corroborated following transfection of Raji cells with YY1 or Snail short interfering RNA. The transfected cells were shown to become sensitive to both CCDP-and TRAIL-induced apoptosis in the absence of galiximab. Furthermore, knockdown of YY1 or Snail inhibited Bcl-XL. The involvement of Bcl-XL inhibition in sensitization was corroborated by the use of the pan-Bcl-2 inhibitor 2MAM-3 whereby the treated cells were sensitive to both CDDP- and TRAIL-induced apoptosis. These findings show that galiximab inhibits the NF-κB/Snail/YY1/Bcl-XL circuit that regulates drug resistance in B-NHL and in combination with cytotoxic drugs results in apoptosis. The findings also support the therapeutic application of the combination of galiximab and cytotoxic drugs in the treatment of drug-resistant CD80-positive B-cell malignancies. ©2012 AACR.

White E.S.,University of Michigan | Brown K.K.,Critical Care and Sleep Medicine | Collard H.R.,University of California at San Francisco | Conoscenti C.S.,Boehringer Ingelheim Pharmaceuticals | And 8 more authors.
Annals of the American Thoracic Society | Year: 2014

Although widespread use of animal modeling has transformed pulmonary research, the overarching goal of biomedical research is to enhance our understanding of human physiology and pathology. Thus, we believe that future gains in understanding human lung disease will be enhanced when studying patient-derived samples becomes an integral part of the investigational process. For idiopathic pulmonary fibrosis (IPF), investigators need quality human specimens, collected in a standardized fashion, along with carefully annotated, long-term clinical and outcomes data to address current knowledge gaps. Access to human lung tissues through commercial entities or the Lung Tissue Resource Consortium, an NHLBI-funded consortium, has demonstrated the feasibility of this approach. However, these samples are not always well annotated or collected uniformly and are limited in their breadth to address future IPF research needs. Therefore, we propose leveraging ongoing and future studies in IPF to establish a biorepository that will meet current and future needs of IPF investigations. Specifically, we propose that blood, cell, and lung samples, linked to robust longitudinal clinical phenotyping generated from future industry, federally sponsored, and investigator-initiated clinical studies be prospectively and uniformly collected and stored in a biorepository and linked registry. Here we outline standardized methodologies that would allow specimens and clinical data collected from different studies to be integrated and accessible to the IPF research community for investigations that will inform future basic and translational research in IPF. Such a biorepository needs the combined efforts of all stakeholders, to be driven by projected future scientific needs and to be available to all qualified researchers. We believe this infrastructure is crucial, is feasible, and would accelerate research in IPF. Copyright © 2014 by the American Thoracic Society

Moreno J.A.,Autonomous University of Madrid | Izquierdo M.C.,Autonomous University of Madrid | Sanchez-Nino M.D.,Autonomous University of Madrid | Suarez-Alvarez B.,Hospital Universitario Central Of Asturias | And 9 more authors.
Journal of the American Society of Nephrology | Year: 2011

Proinflammatory cytokines contribute to renal injury, but the downstream effectors within kidney cells are not well understood. One candidate effector is Klotho, a protein expressed by renal cells that has antiaging properties; Klotho-deficient mice have an accelerated aging-like phenotype, including vascular injury and renal injury. Whether proinflammatory cytokines, such as TNF and TNF-like weak inducer of apoptosis (TWEAK), modulate Klotho is unknown. In mice, exogenous administration of TWEAK decreased expression of Klotho in the kidney. In the setting of acute kidney injury induced by folic acid, the blockade or absence of TWEAK abrogated the injury-related decrease in renal and plasma Klotho levels. TWEAK, TNFα, and siRNA-mediated knockdown of IκBα all activated NFκB and reduced Klotho expression in the MCT tubular cell line. Furthermore, inhibition of NFκB with parthenolide prevented TWEAK- or TNFα-induced downregulation of Klotho. Inhibition of histone deacetylase reversed TWEAKinduced downregulation of Klotho, and chromatin immunoprecipitation showed that TWEAK promotes RelA binding to the Klotho promoter, inducing its deacetylation. In conclusion, inflammatory cytokines, such as TWEAK and TNFα, downregulate Klotho expression through an NFκB-dependent mechanism. These results may partially explain the relationship between inflammation and diseases characterized by accelerated aging of organs, including CKD. Copyright © 2011 by the American Society of Nephrology.

Chort A.,University Pierre and Marie Curie | Chort A.,Institute Du Cerveau Et Of La Moelle Epiniere | Chort A.,French Institute of Health and Medical Research | Chort A.,French National Center for Scientific Research | And 48 more authors.
Brain | Year: 2013

We showed previously, in a cell model of spinocerebellar ataxia 7, that interferon beta induces the expression of PML protein and the formation of PML protein nuclear bodies that degrade mutant ataxin 7, suggesting that the cytokine, used to treat multiple sclerosis, might have therapeutic value in spinocerebellar ataxia 7. We now show that interferon beta also induces PML-dependent clearance of ataxin 7 in a preclinical model, SCA7 266Q/5Q knock-in mice, and improves motor function. Interestingly, the presence of mutant ataxin 7 in the mice induces itself the expression of endogenous interferon beta and its receptor. Immunohistological studies in brains from two patients with spinocerebellar ataxia 7 confirmed that these modifications are also caused by the disease in humans. Interferon beta, administered intraperitoneally three times a week in the knock-in mice, was internalized with its receptor in Purkinje and other cells and translocated to the nucleus. The treatment induced PML protein expression and the formation of PML protein nuclear bodies and decreased mutant ataxin 7 in neuronal intranuclear inclusions, the hallmark of the disease. No reactive gliosis or other signs of toxicity were observed in the brain or internal organs. The performance of the SCA7266Q/5Q knock-in mice was significantly improved on two behavioural tests sensitive to cerebellar function: the Locotronic® Test of locomotor function and the Beam Walking Test of balance, motor coordination and fine movements, which are affected in patients with spinocerebellar ataxia 7. In addition to motor dysfunction, SCA7 266Q/5Q mice present abnormalities in the retina as in patients: ataxin 7-positive neuronal intranuclear inclusions that were reduced by interferon beta treatment. Finally, since neuronal death does not occur in the cerebellum of SCA7266Q/5Q mice, we showed in primary cell cultures expressing mutant ataxin 7 that interferon beta treatment improves Purkinje cell survival. © 2013 The Author.

Discover hidden collaborations