Entity

Time filter

Source Type

Märstetten-Dorf, Switzerland

Sharma R.,University of Liverpool | Lawrenson A.S.,University of Liverpool | Pidathala C.,University of Liverpool | Amewu R.K.,University of Liverpool | And 11 more authors.
Journal of Medicinal Chemistry | Year: 2012

Malaria is responsible for approximately 1 million deaths annually; thus, continued efforts to discover new antimalarials are required. A HTS screen was established to identify novel inhibitors of the parasite's mitochondrial enzyme NADH:quinone oxidoreductase (PfNDH2). On the basis of only one known inhibitor of this enzyme, the challenge was to discover novel inhibitors of PfNDH2 with diverse chemical scaffolds. To this end, using a range of ligand-based chemoinformatics methods, ∼17000 compounds were selected from a commercial library of ∼750000 compounds. Forty-eight compounds were identified with PfNDH2 enzyme inhibition IC 50 values ranging from 100 nM to 40 μM and also displayed exciting whole cell antimalarial activity. These novel inhibitors were identified through sampling 16% of the available chemical space, while only screening 2% of the library. This study confirms the added value of using multiple ligand-based chemoinformatic approaches and has successfully identified novel distinct chemotypes primed for development as new agents against malaria. © 2012 American Chemical Society. Source


Urbaniak M.D.,University of Dundee | Mathieson T.,CellZome | Bantscheff M.,CellZome | Eberhard D.,CellZome | And 6 more authors.
ACS Chemical Biology | Year: 2012

The protozoan parasite Trypanosoma brucei is the causative agent of African sleeping sickness, and there is an urgent unmet need for improved treatments. Parasite protein kinases are attractive drug targets, provided that the host and parasite kinomes are sufficiently divergent to allow specific inhibition to be achieved. Current drug discovery efforts are hampered by the fact that comprehensive assay panels for parasite targets have not yet been developed. Here, we employ a kinase-focused chemoproteomics strategy that enables the simultaneous profiling of kinase inhibitor potencies against more than 50 endogenously expressed T. brucei kinases in parasite cell extracts. The data reveal that T. brucei kinases are sensitive to typical kinase inhibitors with nanomolar potency and demonstrate the potential for the development of species-specific inhibitors. © 2012 American Chemical Society. Source


Engelhardt K.,Norwegian University of Science and Technology | Degnes K.F.,Sintef | Kemmler M.,BioFocus | Bredholt H.,Norwegian University of Science and Technology | And 5 more authors.
Applied and Environmental Microbiology | Year: 2010

Twenty-seven marine sediment- and sponge-derived actinomycetes with a preference for or dependence on seawater for growth were classified at the genus level using molecular taxonomy. Their potential to produce bioactive secondary metabolites was analyzed by PCR screening for genes involved in polyketide and nonribosomal peptide antibiotic synthesis. Using microwell cultures, conditions for the production of antibacterial and antifungal compounds were identified for 15 of the 27 isolates subjected to this screening. Nine of the 15 active extracts were also active against multiresistant Gram-positive bacterial and/or fungal indicator organisms, including vancomycin-resistant Enterococcus faecium and multidrug-resistant Candida albicans. Activityguided fractionation of fermentation extracts of isolate TFS65-07, showing strong antibacterial activity and classified as a Nocardiopsis species, allowed the identification and purification of the active compound. Structure elucidation revealed this compound to be a new thiopeptide antibiotic with a rare aminoacetone moiety. The in vitro antibacterial activity of this thiopeptide, designated TP-1161, against a panel of bacterial strains was determined. Copyright © 2010, American Society for Microbiology. All Rights Reserved. Source


Peters L.W.,Actelion Pharmaceuticals | Molle K.D.,University of Basel | Molle K.D.,Novartis | Thiemeyer A.,University of Basel | And 10 more authors.
Journal of Biomolecular Screening | Year: 2014

The mTOR pathway is a critical integrator of nutrient and growth factor signaling. Once activated, mTOR promotes cell growth and proliferation. Several components of the mTOR pathway are frequently deregulated in tumors, leading to constitutive activation of the pathway and thus contribute to uncontrolled cell growth. We performed a high-throughput screen with an isogenic cell line system to identify compounds specifically inhibiting proliferation of PTEN/mTOR-pathway addicted cells. We show here the characterization and mode of action of two such compound classes. One compound class inhibits components of the PTEN/mTOR signaling pathway, such as S6 ribosomal protein phosphorylation, and leads to cyclin D3 downregulation. These compounds are not adenosine triphosphate competitive inhibitors for kinases in the pathway, nor do they require FKBP12 for activity like rapamycin. The other compound class turned out to be a farnesylation inhibitor, blocking the activity of GTPases, as well as an inducer of oxidative stress. Our results demonstrate that an isogenic cell system with few specific mutations in oncogenes and tumor suppressor genes can identify different classes of compounds selectively inhibiting proliferation of PTEN/mTOR pathway-addicted isogenic clones. The identified mechanisms are in line with the known cellular signaling networks activated by the altered oncogenes and suppressor genes in the isogenic system. © 2013 Society for Laboratory Automation and Screening. Source


Beconi M.,CHDI Management Inc. CHDI Foundation Inc | Aziz O.,BioFocus | Matthews K.,BioFocus | Moumne L.,Kings College London | And 16 more authors.
PLoS ONE | Year: 2012

Histone deacetylase (HDAC) inhibitors have received considerable attention as potential therapeutics for a variety of cancers and neurological disorders. Recent publications on a class of pimelic diphenylamide HDAC inhibitors have highlighted their promise in the treatment of the neurodegenerative diseases Friedreich's ataxia and Huntington's disease, based on efficacy in cell and mouse models. These studies' authors have proposed that the unique action of these compounds compared to hydroxamic acid-based HDAC inhibitors results from their unusual slow-on/slow-off kinetics of binding, preferentially to HDAC3, resulting in a distinctive pharmacological profile and reduced toxicity. Here, we evaluate the HDAC subtype selectivity, cellular activity, absorption, distribution, metabolism and excretion (ADME) properties, as well as the central pharmacodynamic profile of one such compound, HDACi 4b, previously described to show efficacy in vivo in the R6/2 mouse model of Huntington's disease. Based on our data reported here, we conclude that while the in vitro selectivity and binding mode are largely in agreement with previous reports, the physicochemical properties, metabolic and p-glycoprotein (Pgp) substrate liability of HDACi 4b render this compound suboptimal to investigate central Class I HDAC inhibition in vivo in mouse per oral administration. A drug administration regimen using HDACi 4b dissolved in drinking water was used in the previous proof of concept study, casting doubt on the validation of CNS HDAC3 inhibition as a target for the treatment of Huntington's disease. We highlight physicochemical stability and metabolic issues with 4b that are likely intrinsic liabilities of the benzamide chemotype in general. © 2012 Beconi et al. Source

Discover hidden collaborations