Entity

Time filter

Source Type

Chapel Hill, NC, United States

Patent
Roche Molecular Systems, University of North Carolina at Chapel Hill and Biofluidica Inc | Date: 2013-11-08

This invention provides methods and compositions for capturing circulating tumor cells (CTCs) as well as various divergent CTC phenotypes using seprase-specific affinity reagents. Methods of analyzing CTCs and assessing their metastatic potential in vivo and in vitro are also disclosed.


Battle K.N.,Louisiana State University | Uba F.I.,University of North Carolina at Chapel Hill | Soper S.A.,Louisiana State University | Soper S.A.,University of North Carolina at Chapel Hill | And 2 more authors.
Electrophoresis | Year: 2014

The development of fully automated and high-throughput systems for proteomics is now in demand because of the need to generate new protein-based disease biomarkers. Unfortunately, it is difficult to identify protein biomarkers that are low abundant when in the presence of highly abundant proteins, especially in complex biological samples such as serum, cell lysates, and other biological fluids. Membrane proteins, which are in many cases of low abundance compared to the cytosolic proteins, have various functions and can provide insight into the state of a disease and serve as targets for new drugs making them attractive biomarker candidates. Traditionally, proteins are identified through the use of gel electrophoretic techniques, which are not always suitable for particular protein samples such as membrane proteins. Microfluidics offers the potential as a fully automated platform for the efficient and high-throughput analysis of complex samples, such as membrane proteins, and do so with performance metrics that exceed their bench-top counterparts. In recent years, there have been various improvements to microfluidics and their use for proteomic analysis as reported in the literature. Consequently, this review presents an overview of the traditional proteomic-processing pipelines for membrane proteins and insights into new technological developments with a focus on the applicability of microfluidics for the analysis of membrane proteins. Sample preparation techniques will be discussed in detail and novel interfacing strategies as it relates to MS will be highlighted. Lastly, some general conclusions and future perspectives are presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source


Hupert M.L.,University of North Carolina at Chapel Hill | Hupert M.L.,BioFluidica Inc. | Jackson J.M.,University of North Carolina at Chapel Hill | Wang H.,University of North Carolina at Chapel Hill | And 7 more authors.
Microsystem Technologies | Year: 2014

Microsystem-based technologies are providing new opportunities in the area of in vitro diagnostics due to their ability to provide process automation enabling point-of-care operation. As an example, microsystems used for the isolation and analysis of circulating tumor cells (CTCs) from complex, heterogeneous samples in an automated fashion with improved recoveries and selectivity are providing new opportunities for this important biomarker. Unfortunately, many of the existing microfluidic systems lack the throughput capabilities and/or are too expensive to manufacture to warrant their widespread use in clinical testing scenarios. Here, we describe a disposable, all-polymer, microfluidic system for the high-throughput (HT) isolation of CTCs directly from whole blood inputs. The device employs an array of high aspect ratio (HAR), parallel, sinusoidal microchannels (25 × 150 μm; W × D; AR = 6.0) with walls covalently decorated with anti-EpCAM antibodies to provide affinity-based isolation of CTCs. Channel width, which is similar to an average CTC diameter (10-20 μm), plays a critical role in maximizing the probability of cell/wall interactions and allows for achieving high CTC recovery. The extended channel depth allows for increased throughput at the optimized flow velocity (2 mm/s in a microchannel); maximizes cell recovery, and prevents clogging of the microfluidic channels during blood processing. Fluidic addressing of the microchannel array with a minimal device footprint is provided by large cross-sectional area feed and exit channels poised orthogonal to the network of the sinusoidal capillary channels (so-called Z-geometry). Computational modeling was used to confirm uniform addressing of the channels in the isolation bed. Devices with various numbers of parallel microchannels ranging from 50 to 320 have been successfully constructed. Cyclic olefin copolymer (COC) was chosen as the substrate material due to its superior properties during UV-activation of the HAR microchannels surfaces prior to antibody attachment. Operation of the HT-CTC device has been validated by isolation of CTCs directly from blood secured from patients with metastatic prostate cancer. High CTC sample purities (low number of contaminating white blood cells) allowed for direct lysis and molecular profiling of isolated CTCs. © 2013 Springer-Verlag Berlin Heidelberg. Source


Battle K.N.,Louisiana State University | Jackson J.M.,University of North Carolina at Chapel Hill | Witek M.A.,University of North Carolina at Chapel Hill | Hupert M.L.,University of North Carolina at Chapel Hill | And 6 more authors.
Analyst | Year: 2014

We present a novel microfluidic solid-phase extraction (μSPE) device for the affinity enrichment of biotinylated membrane proteins from whole cell lysates. The device offers features that address challenges currently associated with the extraction and purification of membrane proteins from whole cell lysates, including the ability to release the enriched membrane protein fraction from the extraction surface so that they are available for downstream processing. The extraction bed was fabricated in PMMA using hot embossing and was comprised of 3600 micropillars. Activation of the PMMA micropillars by UV/O3 treatment permitted generation of surface-confined carboxylic acid groups and the covalent attachment of NeutrAvidin onto the μSPE device surfaces, which was used to affinity select biotinylated MCF-7 membrane proteins directly from whole cell lysates. The inclusion of a disulfide linker within the biotin moiety permitted release of the isolated membrane proteins via DTT incubation. Very low levels (∼20 fmol) of membrane proteins could be isolated and recovered with ∼89% efficiency with a bed capacity of 1.7 pmol. Western blotting indicated no traces of cytosolic proteins in the membrane protein fraction as compared to significant contamination using a commercial detergent-based method. We highlight future avenues for enhanced extraction efficiency and increased dynamic range of the μSPE device using computational simulations of different micropillar geometries to guide future device designs. © 2014 The Royal Society of Chemistry. Source


Kamande J.W.,Louisiana State University | Hupert M.L.,BioFluidica Inc. | Hupert M.L.,University of North Carolina at Chapel Hill | Witek M.A.,University of North Carolina at Chapel Hill | And 12 more authors.
Analytical Chemistry | Year: 2013

In this manuscript, we discuss the development and clinical use of a thermoplastic modular microsystem for the high-throughput analysis of CTCs directly from whole blood. The modular system offers some innovative features that address challenges currently associated with many CTC platforms; it can exhaustively process 7.5 mL of blood in less than 45 min with recoveries >90%. In addition, the system automates the postselection CTC processing steps and thus, significantly reduces assay turnaround time (from selection to enumeration <1.5 h as compared to >8 h for many reported CTC platforms). The system is composed of 3 functional modules including (i) a thermoplastic CTC selection module composed of high aspect ratio (30 μm × 150 μm) channels containing anti-EpCAM antibodies that is scalable in terms of throughput by employing channel numbers ranging from 50 to 320; the channel number is user selected to accommodate the volume of blood that must be processed; (ii) an impedance sensor module for label-less CTC counting; and (iii) a staining and imaging module for the placement of released cells into a 2D array within a common imaging plane for phenotypic identification. To demonstrate the utility of this system, blood samples from patients with local resectable and metastatic pancreatic ductal adenocarcinoma (PDAC) were analyzed. We demonstrate the ability to select EpCAM positive CTCs from PDAC patients in high purity (>86%) and with excellent yields (mean = 53 CTCs per mL for metastatic PDAC patients) using our modular system. In addition, we demonstrate the ability to detect CTCs in PDAC patients with local resectable disease (mean = 11 CTCs per mL). © 2013 American Chemical Society. Source

Discover hidden collaborations