Time filter

Source Type

Markl J.S.,Biodiversity Climate Research Center Bik nckenberg Gesellschaft For Naturforschung | Schleuning M.,Biodiversity Climate Research Center Bik nckenberg Gesellschaft For Naturforschung | Forget P.M.,CNRS Mechanical Adaptation and Evolution | Jordano P.,EBD Group | And 5 more authors.
Conservation Biology | Year: 2012

Animal-mediated seed dispersal is important for sustaining biological diversity in forest ecosystems, particularly in the tropics. Forest fragmentation, hunting, and selective logging modify forests in myriad ways and their effects on animal-mediated seed dispersal have been examined in many case studies. However, the overall effects of different types of human disturbance on animal-mediated seed dispersal are still unknown. We identified 35 articles that provided 83 comparisons of animal-mediated seed dispersal between disturbed and undisturbed forests; all comparisons except one were conducted in tropical or subtropical ecosystems. We assessed the effects of forest fragmentation, hunting, and selective logging on seed dispersal of fleshy-fruited tree species. We carried out a meta-analysis to test whether forest fragmentation, hunting, and selective logging affected 3 components of animal-mediated seed dispersal: frugivore visitation rate, number of seeds removed, and distance of seed dispersal. Forest fragmentation, hunting, and selective logging did not affect visitation rate and were marginally associated with a reduction in seed-dispersal distance. Hunting and selective logging, but not fragmentation, were associated with a large reduction in the number of seeds removed. Fewer seeds of large-seeded than of small-seeded tree species were removed in hunted or selectively logged forests. A plausible explanation for the consistently negative effects of hunting and selective logging on large-seeded plant species is that large frugivores, as the predominant seed dispersers for large-seeded plant species, are the first animals to be extirpated from hunted or logged forests. The reduction in forest area after fragmentation appeared to have weaker effects on frugivore communities and animal-mediated seed dispersal than hunting and selective logging. The differential effects of hunting and selective logging on large- and small-seeded tree species underpinned case studies that showed disrupted plant-frugivore interactions could trigger a homogenization of seed traits in tree communities in hunted or logged tropical forests. ©2012 Society for Conservation Biology.


Medlyn B.E.,Macquarie University | Medlyn B.E.,University of Western Sydney | Zaehle S.,Max Planck Institute for Biogeochemistry | De Kauwe M.G.,Macquarie University | And 20 more authors.
Nature Climate Change | Year: 2015

Ecosystem responses to rising CO 2 concentrations are a major source of uncertainty in climate change projections. Data from ecosystem-scale Free-Air CO 2 Enrichment (FACE) experiments provide a unique opportunity to reduce this uncertainty. The recent FACE Model-Data Synthesis project aimed to use the information gathered in two forest FACE experiments to assess and improve land ecosystem models. A new 'assumption-centred' model intercomparison approach was used, in which participating models were evaluated against experimental data based on the ways in which they represent key ecological processes. By identifying and evaluating the main assumptions causing differences among models, the assumption-centred approach produced a clear roadmap for reducing model uncertainty. Here, we explain this approach and summarize the resulting research agenda. We encourage the application of this approach in other model intercomparison projects to fundamentally improve predictive understanding of the Earth system. © 2015 Macmillan Publishers Limited.

Loading Biodiversity Climate Research Center Bik nckenberg Gesellschaft For Naturforschung collaborators
Loading Biodiversity Climate Research Center Bik nckenberg Gesellschaft For Naturforschung collaborators