Time filter

Source Type

Heidelberg, Germany

Welti S.,Structural and Computational Biology Unit | Kuhn S.,Structural and Computational Biology Unit | D'Angelo I.,Structural and Computational Biology Unit | Brugger B.,Biochemistry Center Heidelberg | And 2 more authors.
Human Mutation | Year: 2011

Neurofibromatosis type 1 (NF1) is a common genetic disorder caused by alterations in the tumor suppressor gene NF1. Clinical manifestations include various neural crest derived tumors, pigmentation anomalies, bone deformations, and learning disabilities. NF1 encodes the Ras specific GTPase activating protein (RasGAP) neurofibromin, of which the central RasGAP related domain as well as a Sec14-like (residues 1560-1699) and a tightly interacting pleckstrin homology (PH)-like (1713-1818) domain are currently well defined. However, patient-derived nontruncating mutations have been reported along the whole NF1 gene, suggesting further essential protein functions. Focusing on the Sec14-PH module, we have engineered such nontruncating mutations and analyzed their implications on protein function and structure using lipid binding assays, CD spectroscopy and X-ray crystallography. Although lipid binding appears to be preserved among most nontruncating mutants, we see major structural changes for two of the alterations. Judging from these changes and our biochemical data, we suggest the presence of an intermolecular contact surface in the lid-lock region of the protein. © 2011 Wiley-Liss, Inc.

Drechsler H.,Biochemistry Center Heidelberg | Drechsler H.,University of Warwick | Tan A.N.,Biochemistry Center Heidelberg | Liakopoulos D.,Biochemistry Center Heidelberg | Liakopoulos D.,French National Center for Scientific Research
Journal of Cell Science | Year: 2015

The S. cerevisiae kinesin Kip2 stabilises astral microtubules (MTs) and facilitates spindle positioning through transport of MT-associated proteins, such as the yeast CLIP-170 homologue Bik1, dynein and the adenomatous-polyposis-coli-related protein Kar9 to the plus ends of astral MTs. Here, we show that Kip2 associates with its processivity factor Bim1, the yeast homologue of the plus-end-tracking protein EB1. This interaction requires an EB1-binding motif in the N-terminal extension of Kip2 and is negatively regulated by phosphorylation through Mck1, the yeast glycogen synthase kinase 3. In addition, Mck1-dependent phosphorylation decreases the intrinsic MT affinity of Kip2. Reduction in Kip2 phosphorylation leads to stabilisation of astral MTs, and accumulation of Kip2, dynein and Kar9 at MT plus ends, whereas loss of Mck1 function leads to defects in spindle positioning. Furthermore, we provide evidence that a subpopulation of Mck1 at the bud-cortex phosphorylates Kip2. We propose that yeast GSK-3 spatially controls astral MT dynamics and the loading of dynein and Kar9 on astral MT plus ends by regulating Kip2 interactions with Bim1 and MTs. © 2015.

Schweiggert J.,French National Center for Scientific Research | Schweiggert J.,Biochemistry Center Heidelberg | Schweiggert J.,University of Heidelberg | Stevermann L.,Biochemistry Center Heidelberg | And 6 more authors.
Developmental Cell | Year: 2016

Correct function of the mitotic spindle requires balanced interplay of kinetochore and astral microtubules that mediate chromosome segregation and spindle positioning, respectively. Errors therein can cause severe defects ranging from aneuploidy to developmental disorders. Here, we describe a protein degradation pathway that functionally links astral microtubules to kinetochores via regulation of a microtubule-associated factor. We show that the yeast spindle positioning protein Kar9 localizes not only to astral but also to kinetochore microtubules, where it becomes targeted for proteasomal degradation by the SUMO-targeted ubiquitin ligases (STUbLs) Slx5-Slx8. Intriguingly, this process does not depend on preceding sumoylation of Kar9 but rather requires SUMO-dependent recruitment of STUbLs to kinetochores. Failure to degrade Kar9 leads to defects in both chromosome segregation and spindle positioning. We propose that kinetochores serve as platforms to recruit STUbLs in a SUMO-dependent manner in order to ensure correct spindle function by regulating levels of microtubule-associated proteins. © 2016 Elsevier Inc.

Discover hidden collaborations