Time filter

Source Type

Song L.,BioChain Beijing Science and Technology Inc. | Li Y.,The Chinese PLA 309 Hospital
Advances in Clinical Chemistry | Year: 2015

SEPT9 gene methylation has been implicated as a biomarker for colorectal cancer (CRC) for more than 10. years and has been used clinically for more than 6. years. Studies have proven it to be an accurate, reliable, fast, and convenient method for CRC. In this chapter, we will first provide the background on the role of septin9 protein and the theoretical basis of the SEPT9 gene methylation assay. We will then focus on the performance of SEPT9 gene methylation assay for CRC early detection and screening by analyzing the data obtained in clinical trials and comparing its performance with other methods or markers. Finally, we will discuss the future applications of the assay in monitoring cancer recurrence, evaluating surgery, chemotherapy, and predicting long-term survival. We hope this chapter can provide a full overview of the theoretical basis, development, validation, and clinical applications of the SEPT9 assay for both basic science researchers and clinical practitioners. © 2015 Elsevier Inc.

Song Y.,Peking Union Medical College | Liu J.,Peking Union Medical College | Huang S.,Peking Union Medical College | Zhang L.,BioChain Beijing Science and Technology Inc.
Placenta | Year: 2013

Preeclampsia (PE), which affects 2-7% of human pregnancies, causes significant maternal and neonatal morbidity and mortality. To better understand the pathophysiology of PE, the gene expression profiles of placental tissue from 5 controls and 5 PE patients were assessed using microarray. A total of 224 transcripts were significantly differentially expressed (>2-fold change and q value < 0.05, SAM software). Gene Ontology (GO) enrichment analysis indicated that genes involved in hypoxia and oxidative and reductive processes were significantly changed. Three differentially expressed genes (DEGs) involved in these biological processes were further verified by quantitative real-time PCR. Finally, the potential therapeutic agents for PE were explored via the Connectivity Map database. In conclusion, the data obtained in this study might provide clues to better understand the pathophysiology of PE and to identify potential therapeutic agents for PE patients. © 2013 Elsevier Ltd. All rights reserved.

Song L.,The Chinese PLA 309 Hospital | Song L.,BioChain Beijing Science and Technology Inc. | Yu H.,The Chinese PLA 309 Hospital | Li Y.,The Chinese PLA 309 Hospital
Molecular Diagnosis and Therapy | Year: 2015

Lung cancer is the most prevalent cancer in the world. Few effective and cheap methods are available so far for early detection and screening of lung cancer. Although histological and cytological examinations are gold standards in lung cancer diagnosis, patients are always at late stages when diagnosis is confirmed. Therefore, new diagnostic methods are needed urgently to increase the early diagnostic rate, enhance the confirmed diagnostic rate, and reduce mortality. The SHOX2 gene methylation assay has become a promising option for the above purposes. It has been shown to enhance the confirmed diagnostic rate of lung cancer in several clinical trials when combined with histological or cytological assays, and has the potential to become an early diagnostic tool. This article reviews the outcome of clinical trials using the SHOX2 gene methylation assay alone or in combination with other examinations, and suggests its future applications and research directions. © 2015, Springer International Publishing Switzerland.

Song L.,Institute of Tuberculosis Research | Song L.,BioChain Beijing Science and Technology Inc. | Cui R.,Institute of Tuberculosis Research | Yang Y.,Institute of Tuberculosis Research | Wu X.,Institute of Tuberculosis Research
Journal of Microbiology, Immunology and Infection | Year: 2015

The immunity of human immune cells and their ability to inhibit Mycobacterium tuberculosis (MTB) are key factors in the anti-MTB effect. However, MTB modulates the levels and activity of key intracellular second messengers, such as calcium, to evade protective immune responses. Recent studies suggest that inhibiting L-type calcium channel in immune cells using either antibodies or small interfering RNA increases calcium influx, upregulates the expression of proinflammation genes, and reduces MTB burden. First, we will review the key factors in calcium-signaling pathway that may affect the immunity of immune cells to MTB infection. Second, we will focus on the role of calcium channels in regulating cellular immunity to MTB. Finally, we will discuss the possibility of using calcium-channel blockers as anti-MTB chemotherapy drugs to enhance chemotherapy effects, shorten treatment period, and overcome drug resistance. © 2014.

Luo Q.,Central China Normal University | Shang J.,Central China Normal University | Feng X.,Central China Normal University | Guo X.,Central China Normal University | And 2 more authors.
Current Microbiology | Year: 2013

The foodborne pathogen Listeria monocytogenes has the ability to develop biofilm in the food-processing environment, which becomes a major concern for food safety. PrfA, a key transcriptional activator that regulates most of the known listerial virulence gene expression, has been shown to promote L. monocytogenes biofilm formation. In this study, the whole-genome microarray was used to identify differentially expressed genes associated with the putative interaction between biofilm formation and PrfA in L. monocytogenes. Comparative transcriptome analyses indicated that over 21.9 % of the L. monocytogenes EGDe genes (627 out of 2,857 predicted) were altered in their expression of biofilm compared to the planktonic phase. These genes were classified into different functional categories which cover most of the biochemical functions encountered in bacterial cells, indicating that L. monocytogenes biofilm formation is probably controlled by a complex regulation network involved in variable genes required for the different biological pathways. Further comparison of gene expression profiles of biofilms between L. monocytogenes EGDe and its PrfA deletion mutant revealed 185 genes associated with PrfA and biofilm formation. Except for 10 genes, transcription levels of 175 genes were completely opposite between ΔprfA and wild-type during the biofilm formation, i.e., up-regulated genes in ΔprfA were down-regulated in the wild-type strain, and vice versa, indicating that loss of PrfA dramatically altered gene expression patterns in L. monocytogenes biofilm and resulted in reduced ability of the biofilm formation. © 2013 Springer Science+Business Media New York.

Discover hidden collaborations