Time filter

Source Type

Puchheim, Germany

Amoury M.,RWTH Aachen | Mladenov R.,RWTH Aachen | Nachreiner T.,RWTH Aachen | Pham A.-T.,RWTH Aachen | And 13 more authors.
International Journal of Cancer | Year: 2016

Chondroitin sulfate proteoglycan 4 (CSPG4) has been identified as a highly promising target antigen for immunotherapy of triple-negative breast cancer (TNBC). TNBC represents a highly aggressive heterogeneous group of tumors lacking expression of estrogen, progesterone and human epidermal growth factor receptor 2. TNBC is particularly prevalent among young premenopausal women. No suitable targeted therapies are currently available and therefore, novel agents for the targeted elimination of TNBC are urgently needed. Here, we present a novel cytolytic fusion protein (CFP), designated αCSPG4(scFv)-MAP, that consists of a high affinity CSPG4-specific single-chain antibody fragment (scFv) genetically fused to a functionally enhanced form of the human microtubule-associated protein (MAP) tau. Our data indicate that αCSPG4(scFv)-MAP efficiently targets CSPG4+ TNBC-derived cell lines MDA-MB-231 and Hs 578T and potently inhibits their growth with IC50 values of ∼200 nM. Treatment with αCSPG(scFv)-MAP resulted in induction of the mitochondrial stress pathway by activation of caspase-9 as well as endonuclease G translocation to the nucleus, while induction of the caspase-3 apoptosis pathway was not detectable. Importantly, in vivo studies in mice bearing human breast cancer xenografts revealed efficient targeting to and accumulation of αCSPG4(scFv)-MAP at tumor sites resulting in prominent tumor regression. Taken together, this preclinical proof of concept study confirms the potential clinical value of αCSPG4(scFv)-MAP as a novel targeted approach for the elimination of CSPG4-positive TNBC. © 2016 UICC

Ylera F.,Bio Rad AbD Serotec GmbH | Harth S.,Bio Rad AbD Serotec GmbH | Waldherr D.,Bio Rad AbD Serotec GmbH | Frisch C.,Bio Rad AbD Serotec GmbH | Knappik A.,Bio Rad AbD Serotec GmbH
Analytical Biochemistry | Year: 2013

The rapidly increasing number of therapeutic antibodies in clinical development and on the market requires corresponding detection reagents for monitoring the concentration of these drugs in patient samples and as positive controls for measurement of anti-drug antibodies. Phage display of large recombinant antibody libraries has been shown to enable the rapid development of fully human anti-idiotypic antibodies binding specifically to antibody drugs, since the in vitro panning approach allows for incorporation of suitable blockers to drive selection toward the paratope of the drug. A typical bottleneck in antibody generation projects is ranking of the many candidates obtained after panning on the basis of antibody binding strength. Ideally, such method will work without prior labeling of antigens and with crude bacterial lysates. We developed an off-rate screening method of crude Escherichia coli lysates containing monovalent Fab fragments obtained after phage display of the HuCAL PLATINUM® antibody library. We used the antibody drugs trastuzumab and cetuximab as antigen examples. Using the Octet® RED384 label-free sensor instrument we show that antibody off rates can be reliably determined in crude bacterial lysates with high throughput. We also demonstrate that the method can be applied to screening for high-affinity antibodies typically obtained after affinity maturation. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

Discover hidden collaborations