Bio H2 Energy GmbH

Jena, Germany

Bio H2 Energy GmbH

Jena, Germany
SEARCH FILTERS
Time filter
Source Type

Abendroth C.,University of Valencia | Abendroth C.,Robert Boyle Institute e.V. | Simeonov C.,Robert Boyle Institute e.V. | Pereto J.,University of Valencia | And 4 more authors.
Biotechnology for Biofuels | Year: 2017

Background: Separating acidification and methanogenic steps in anaerobic digestion processes can help to optimize the process and contribute to producing valuable sub-products such as methane, hydrogen and organic acids. However, the full potential of this technology has not been fully explored yet. To assess the underlying fermentation process in more detail, a combination of high-throughput sequencing and proteomics on the acidification step of plant material (grass) at both mesophilic and thermophilic temperatures (37 and 55°C, respectively) was applied for the first time. Results: High-strength liquor from acidified grass biomass exhibited a low biodiversity, which differed greatly depending on temperature. It was dominated by Bacteroidetes and Firmicutes at 37°C, and by Firmicutes and Proteobacteria at 55°C. At the methane stage, Methanosaeta, Methanomicrobium and Methanosarcina proved to be highly sensitive to environmental changes as their abundance in the seed sludges dropped dramatically after transferring the seed sludges from the respective reactors into the experimental setup. Further, an increase in Actinobacteria coincided with reduced biogas production at the end of the experiment. Over 1700 proteins were quantified from the first cycle of acidification samples using label-free quantitative proteome analysis and searching protein databases. The most abundant proteins included an almost complete set of glycolytic enzymes indicating that the microbial population is basically engaged in the degradation and catabolism of sugars. Differences in protein abundances clearly separated samples into two clusters corresponding to culture temperature. More differentially expressed proteins were found under mesophilic (120) than thermophilic (5) conditions. Conclusion: Our results are the first multi-omics characterisation of a two-stage biogas production system with separated acidification and suggest that screening approaches targeting specific taxa such as Methanosaeta, Methanomicrobium and Methanosarcina could be useful diagnostic tools as indicators of environmental changes such as temperature or oxidative stress or, as in the case of Actinobacteria, they could be used as a proxy of the gas production potential of anaerobic digesters. Metaproteome analyses only detected significant expression differences in mesophilic samples, whereas thermophilic samples showed more stable protein composition with an abundance of chaperones suggesting a role in protein stability under thermal stress. © 2017 The Author(s).


Abendroth C.,Bio H2 Energy GmbH | Abendroth C.,University of Valencia | Wunsche E.,Bio H2 Energy GmbH | Luschnig O.,Bio H2 Energy GmbH | And 3 more authors.
Waste Management and Research | Year: 2015

This report describes the results from anaerobic batch acidification of chicken manure as a mono-substrate studied under mesophilic conditions. The manure was diluted with tap water to prevent methane formation during acidification and to improve mixing conditions by reducing fluid viscosity; no anaerobic digester sludge has been added as an inoculum. Highest acidification rates were measured at concentrations of 10 gVS L-1 and 20 gVS L-1; the pH value remained high (pH 6.9-7.9) throughout the test duration and unexpected fast methane formation was observed in every single batch. At substrate concentrations of 10 gVS L-1 there was a remarkable methane formation representing a value of 82% of the respective biochemical methane potential of chicken manure. Increasing substrate concentrations did not supress methane formation but impaired acid production. Consequently, the liquor cannot be stored over longer periods but should immediately be used in a digestion process. © The Author(s) 2015.


Abendroth C.,University of Valencia | Abendroth C.,Bio H2 Energy GmbH | Vilanova C.,University of Valencia | Gunther T.,Eurofins | And 3 more authors.
Biotechnology for Biofuels | Year: 2015

Background: Only a fraction of the microbial species used for anaerobic digestion in biogas production plants are methanogenic archaea. We have analyzed the taxonomic profiles of eubacteria and archaea, a set of chemical key parameters, and biogas production in samples from nine production plants in seven facilities in Thuringia, Germany, including co-digesters, leach-bed, and sewage sludge treatment plants. Reactors were sampled twice, at a 1-week interval, and three biological replicates were taken in each case. Results: A complex taxonomic composition was found for both eubacteria and archaea, both of which strongly correlated with digester type. Plant-degrading Firmicutes as well as Bacteroidetes dominated eubacteria profiles in high biogas-producing co-digesters; whereas Bacteroidetes and Spirochaetes were the major phyla in leach-bed and sewage sludge digesters. Methanoculleus was the dominant archaea genus in co-digesters, whereas Methanosarcina and Methanosaeta were the most abundant methanogens in leachate from leach-bed and sewage sludge digesters, respectively. Conclusions: This is one of the most comprehensive characterizations of the microbial communities of biogas-producing facilities. Bacterial profiles exhibited very low variation within replicates, including those of semi-solid samples; and, in general, low variation in time. However, facility type correlated closely with the bacterial profile: each of the three reactor types exhibited a characteristic eubacteria and archaea profile. Digesters operated with solid feedstock, and high biogas production correlated with abundance of plant degraders (Firmicutes) and biofilm-forming methanogens (Methanoculleus spp.). By contrast, low biogas-producing sewage sludge treatment digesters correlated with high titers of volatile fatty acid-adapted Methanosaeta spp. © 2015 Abendroth et al.


Abendroth C.,University of Valencia | Vilanova C.,University of Valencia | Gunther T.,Eurofins | Luschnig O.,Bio H2 Energy GmbH | Porcar M.,University of Valencia
Biotechnology for Biofuels | Year: 2015

Background: Only a fraction of the microbial species used for anaerobic digestion in biogas production plants are methanogenic archaea. We have analyzed the taxonomic profiles of eubacteria and archaea, a set of chemical key parameters, and biogas production in samples from nine production plants in seven facilities in Thuringia, Germany, including co-digesters, leach-bed, and sewage sludge treatment plants. Reactors were sampled twice, at a 1-week interval, and three biological replicates were taken in each case. Results: A complex taxonomic composition was found for both eubacteria and archaea, both of which strongly correlated with digester type. Plant-degrading Firmicutes as well as Bacteroidetes dominated eubacteria profiles in high biogas-producing co-digesters; whereas Bacteroidetes and Spirochaetes were the major phyla in leach-bed and sewage sludge digesters. Methanoculleus was the dominant archaea genus in co-digesters, whereas Methanosarcina and Methanosaeta were the most abundant methanogens in leachate from leach-bed and sewage sludge digesters, respectively. Conclusions: This is one of the most comprehensive characterizations of the microbial communities of biogas-producing facilities. Bacterial profiles exhibited very low variation within replicates, including those of semi-solid samples; and, in general, low variation in time. However, facility type correlated closely with the bacterial profile: each of the three reactor types exhibited a characteristic eubacteria and archaea profile. Digesters operated with solid feedstock, and high biogas production correlated with abundance of plant degraders (Firmicutes) and biofilm-forming methanogens (Methanoculleus spp.). By contrast, low biogas-producing sewage sludge treatment digesters correlated with high titers of volatile fatty acid-adapted Methanosaeta spp. © 2015 Abendroth et al.


PubMed | University of Valencia, Bio H2 Energy GmbH and Eurofins
Type: Journal Article | Journal: Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA | Year: 2015

This report describes the results from anaerobic batch acidification of chicken manure as a mono-substrate studied under mesophilic conditions. The manure was diluted with tap water to prevent methane formation during acidification and to improve mixing conditions by reducing fluid viscosity; no anaerobic digester sludge has been added as an inoculum. Highest acidification rates were measured at concentrations of 10gVSL and 20gVSL; the pH value remained high (pH6.9-7.9) throughout the test duration and unexpected fast methane formation was observed in every single batch. At substrate concentrations of 10gVSL there was a remarkable methane formation representing a value of 82% of the respective biochemical methane potential of chicken manure. Increasing substrate concentrations did not supress methane formation but impaired acid production. Consequently, the liquor cannot be stored over longer periods but should immediately be used in a digestion process.


PubMed | University of Valencia, Bio H2 Energy GmbH and Eurofins
Type: | Journal: Biotechnology for biofuels | Year: 2015

Only a fraction of the microbial species used for anaerobic digestion in biogas production plants are methanogenic archaea. We have analyzed the taxonomic profiles of eubacteria and archaea, a set of chemical key parameters, and biogas production in samples from nine production plants in seven facilities in Thuringia, Germany, including co-digesters, leach-bed, and sewage sludge treatment plants. Reactors were sampled twice, at a 1-week interval, and three biological replicates were taken in each case.A complex taxonomic composition was found for both eubacteria and archaea, both of which strongly correlated with digester type. Plant-degrading Firmicutes as well as Bacteroidetes dominated eubacteria profiles in high biogas-producing co-digesters; whereas Bacteroidetes and Spirochaetes were the major phyla in leach-bed and sewage sludge digesters. Methanoculleus was the dominant archaea genus in co-digesters, whereas Methanosarcina and Methanosaeta were the most abundant methanogens in leachate from leach-bed and sewage sludge digesters, respectively.This is one of the most comprehensive characterizations of the microbial communities of biogas-producing facilities. Bacterial profiles exhibited very low variation within replicates, including those of semi-solid samples; and, in general, low variation in time. However, facility type correlated closely with the bacterial profile: each of the three reactor types exhibited a characteristic eubacteria and archaea profile. Digesters operated with solid feedstock, and high biogas production correlated with abundance of plant degraders (Firmicutes) and biofilm-forming methanogens (Methanoculleus spp.). By contrast, low biogas-producing sewage sludge treatment digesters correlated with high titers of volatile fatty acid-adapted Methanosaeta spp.

Loading Bio H2 Energy GmbH collaborators
Loading Bio H2 Energy GmbH collaborators