Time filter

Source Type

Yadav A.K.,Bhagyoday Tirth Pharmacy College
Artificial Cells, Nanomedicine and Biotechnology | Year: 2016

The objective of present work was to enquire the potential use of embelin-loaded nanolipid carriers for brain targeting. The average particle size and polydispersity index (PDI) of optimized formulation (F19) were found to be 152 ± 19.7 nm and 0.143 ± 0.023, respectively. Nanolipid carrier (NLC) was also significantly attenuated pentylenetetrazole (PTZ)-induced biochemical parameters in comparison to plain embelin that results in an increase in the level of malondialdehyde (MDA), nitrite, and reduction in the level of glutathione. From the results, it was concluded that embelin-NLCs developed as a beneficial carrier to achieve sustained release and brain targeting through nasal route. © 2016 Informa UK Limited, trading as Taylor & Francis Group

Jain A.,Dr Hari Singh Gour University | Jain A.,Panjab University | Garg N.K.,Dr Hari Singh Gour University | Garg N.K.,Panjab University | And 5 more authors.
Drug Development and Industrial Pharmacy | Year: 2016

The present study documents the fabrication and characterization of a topically applicable gel loaded with nanostructured lipid carriers (NLCs) of adapalene (ADA) and vitamin C (ascorbyl-6- palmitate [AP]). The NLCs were prepared by high pressure homogenization (HPH) method followed by incorporation into AP loaded gel. The fabricated system was characterized for size, poly dispersity index, entrapment efficiency (EE) and in vitro drug release properties, and was further investigated for skin compliance, skin transport characteristics (skin permeation and biodistribution), rheological behavior, texture profile analysis and anti-acne therapeutic potential against testosterone-induced acne in male Wistar rats. The NLC-based formulation improved targeting of the skin epidermal layer and reducing systemic penetration. The co-administration of vitamin C led to an adjunct effect in acne therapy in physiological conditions. In brief, the present results suggest the potential of NLCs as a novel carrier for the dermal delivery of ADA and also the synergistic effect of vitamin C in topical therapeutics. © 2015 Taylor & Francis.

Jain D.,Bhagyoday Tirth Pharmacy College
Biomatter | Year: 2011

Pulsatile drug delivery systems (PDDS) have attracted attraction because of their multiple benefits over conventional dosage forms. They deliver the drug at the right time, at the right site of action and in the right amount, which provides more benefit than conventional dosages and increased patient compliance. These systems are designed according to the circadian rhythm of the body, and the drug is released rapidly and completely as a pulse after a lag time. These products follow the sigmoid release profile characterized by a time period. These systems are beneficial for drugs with chronopharmacological behavior, where nocturnal dosing is required, and for drugs that show the first-pass effect. This review covers methods and marketed technologies that have been developed to achieve pulsatile delivery. Marketed technologies, such as Pulsincap™, Diffucaps(®), CODAS(®), OROS(®) and PULSYS™, follow the above mechanism to render a sigmoidal drug release profile. Diseases wherein PDDS are promising include asthma, peptic ulcers, cardiovascular ailments, arthritis and attention deficit syndrome in children and hypercholesterolemia. Pulsatile drug delivery systems have the potential to bring new developments in the therapy of many diseases.

Jain V.,Bhagyoday Tirth Pharmacy College
Biomatter | Year: 2011

For treating colonic diseases, conventional oral drug delivery systems are not effective, as they fail to reach the appropriate site of action. Thus, there is a need to develop effective and safe therapy for the treatment of colonic disorders. The aim of the present study was to design a colon-specific delivery system for an anti-inflammatory drug, mesalamine, with minimal degradation and optimum delivery of the drug with relatively higher local concentration, which may provide more effective therapy for inflammatory bowel disease including Crohn disease and ulcerative colitis. Factorial designs (four factors and two levels) for eudragit S-100 (pH-dependent polymer)-coated, pectin (natural polysaccharides)-based microspheres of mesalamine were constructed and conducted in a fully randomized manner to study all possible combinations. Based on the desirability function formulation, F14 was found to be the best formulation. The overall desirability coefficient of formulation F14 was found to be 0.825. The formulation F14 was subjected to in vitro release studies, and the results were evaluated kinetically and statistically. The microspheres started releasing the drug at the beginning of 7th hour, which corresponds to the arrival time at proximal colon. The cumulative percent drug release for formulation F14 at the end of 16 h was found to be 98%. The release kinetics showed that the release followed the Higuchi model, and the main mechanism of drug release was diffusion. The study presents a new approach for colon-specific drug delivery.

Jain A.,Dr Hari Singh Gour University | Jain A.,Bhagyoday Tirth Pharmacy College | Jain S.,Shobhit University | Jain S.,Bhagyoday Tirth Pharmacy College | And 2 more authors.
Drug Delivery and Translational Research | Year: 2015

Cancer is the second leading cause of death worldwide, the deaths are projected to continue rising, with an estimated 12 million deaths in 2030. The aim of the present investigation is to prepare and compare the uncoated (U-CH NP) and eudragit S 100-coated (E-U-CH NP) chitosan nanoparticles encapsulating a caspase 3 activator (UCN 01), by ionic gelation method. The prepared formulations were studied for various parameters like particles size, zeta potential, transmission electron microscopy, atomic force microscopy, in vitro release study, ex vivo study using Caco 2 colon cancer cell line, and in vivo studies. The particle size and zeta potential of developed formulation was found to be particle size of 168 ± 3.7 nm and +35.8 ± 3.7 for U-CH NP and 265 ± 4.1 nm and +22.3 ± 1.1 for E-U-CH NP. TEM and AFM images revealed that U-CH NPs were round in shape and smoother at surface as compared to E-U-CH NP which have irregular surface due to coating. The E-U-CH NP showed better in vitro release than uncoated formulation in SCF (pH 6.8) than in SGF (pH 1.2). The cytotoxicity was performed by MTT assay. U-CH NP showed enhanced cytotoxicity as compared to blank (without drug) formulation. There was an increase in caspase 3 activity of U-CH NP as compared to UCN 01 alone. E-U-CH NP showed better tumor regression ability than U-CH NP. The results of plasma profile and tumor regression study demonstrated that E-U-CH NP has continuous release profile of UCN 01 and comprehensive residence time. Thus, it is better acceptable than free UCN 01 and may be a potential delivery system for the targeting and treatment of colon cancer. © 2015, Controlled Release Society.

Discover hidden collaborations