Time filter

Source Type

Mumbai, India

The Bhabha Atomic Research Centre is India's premier nuclear research facility based in Trombay, Mumbai. BARC is a multi-disciplinary research centre with extensive infrastructure for advanced research and development covering the entire spectrum of nuclear science, engineering and related areas.BARC's core mandate is to sustain peaceful applications of nuclear energy, primarily for power generation. It manages all facets of nuclear power generation, from theoretical design of reactors, computerised modelling and simulation, risk analysis, development and testing of new reactor fuel materials, etc. It also conducts research in spent fuel processing, and safe disposal of nuclear waste. Its other research focus areas are applications for isotopes in industries, medicine, agriculture, etc. BARC operates a number of research reactors across the country. Wikipedia.

Priyadarsini K.I.,Bhabha Atomic Research Center
Molecules | Year: 2014

Curcumin, a pigment from turmeric, is one of the very few promising natural products that has been extensively investigated by researchers from both the biological and chemical point of view. While there are several reviews on the biological and pharmacological effects of curcumin, chemistry reviews are comparatively scarcer. In this article, an overview of different aspects of the unique chemistry research on curcumin will be discussed. These include methods for the extraction from turmeric, laboratory synthesis methods, chemical and photochemical degradation and the chemistry behind its metabolism. Additionally other chemical reactions that have biological relevance like nucleophilic addition reactions, and metal chelation will be discussed. Recent advances in the preparation of new curcumin nanoconjugates with metal and metal oxide nanoparticles will also be mentioned. Directions for future investigations to be undertaken in the chemistry of curcumin have also been suggested. © 2014 by the authors; licensee MDPI, Basel, Switzerland.

Nancharaiah Y.V.,UNESCO-IHE Institute for Water Education | Nancharaiah Y.V.,Bhabha Atomic Research Center | Lens P.N.L.,UNESCO-IHE Institute for Water Education
Microbiology and Molecular Biology Reviews | Year: 2015

In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

Immobilization of phosphate containing high level nuclear wastes within commonly used silicate glasses is difficult due to restricted solubility of P2O5 within such melts and its tendency to promote crystallization. The situation becomes more adverse when sulfate, chromate, etc. are also present within the waste. To solve this problem waste developers have carried out significant laboratory scale research works in various phosphate based glass systems and successfully identified few formulations which apparently look very promising as they are chemically durable, thermally stable and can be processed at moderate temperatures. However, in the absence of required plant scale manufacturing experiences it is not possible to replace existing silicate based vitrification processes by the phosphate based ones. A review on phosphate glass based wasteforms is presented here. © 2012 Elsevier B.V.

Behavioral heterogeneity within a given patient cohort has been a major challenge in clinical practice and is probably most prominently observed in the field of oncology. This has been the prime impetus of the cutting-edge preclinical and clinical research studies over recent times, many of which seek to further stratify patients based on patients' genetic, proteomic, and metabolic profile (the three key components of "-omics" research), in order to select the appropriate therapy according to an individual's best-fit. Data from functional radionuclide imaging particularly that obtained from PET-CT, with regard to characterization of an individual's tumor phenotype, can play a very important role in answering some of the critical decision-making questions on an individual basis. The role of molecular imaging with PET, SPECT, and planar radionuclide technologies is not confined to early response assessment of administered therapeutics (which is its major benefit compared to conventional methods), rather it has a much broader perspective and encompasses multiple steps in decision making steps of patient management. The immense impact of the radionuclide-based molecular imaging techniques on the selection of an appropriate treatment (at initial diagnosis, during therapy, or after therapy) or in defining the tumor biology has been documented and increasingly recognized through both large and small-scale studies. However, there has been relatively less systematic effort towards the development of a successful and definitive clinical model of "personalized cancer medicine" (based on accurate disease triaging on an individual basis) by the medical community that would be suitable for routine adoption. In this paper, an endeavor has been made to explore the potential of this approach and underscore the areas that would require further critical evaluation to make this a reality. © 2013, Discovery Medicine.

Choudhury N.,Bhabha Atomic Research Center
Journal of Chemical Physics | Year: 2010

We investigate the effect of solute surface topology created by considering various intermolecular separations of the hydrophobic, paraffinlike plates on the dynamics of water confined between two such plates. The solute plates are made up of 5 n-C18H38 molecules arranged in parallel in such a way that all the carbon atoms of the paraffin molecule are lying on the same plane. Results are obtained from extensive molecular dynamics simulations of aqueous solutions of paraffinlike plates in the isothermal-isobaric ensemble. A strong dependence of the translational as well as vibrational dynamics of the confined water molecules on surface topology (intermolecular distance within the paraffinlike plate) has been observed. Analysis of mean squared displacement reveals anomalous nonlinear behavior of the water molecules in the nanoconfined environment. © 2010 American Institute of Physics.

Discover hidden collaborations