Time filter

Source Type

Montpelier, VT, United States

Mitchell E.,Better Life Laboratories | Frisbie S.,Better Life Laboratories | Frisbie S.,Norwich University | Sarkar B.,Molecular Structure and Function Program | Sarkar B.,University of Toronto
Metallomics | Year: 2011

This paper presents an overview of the global extent of naturally occurring toxic metals in groundwater. Adverse health effects attributed to the toxic metals most commonly found in groundwater are reviewed, as well as chemical, biochemical, and physiological interactions between these metals. Synergistic and antagonistic effects that have been reported between the toxic metals found in groundwater and the dietary trace elements are highlighted, and common behavioural, cultural, and dietary practices that are likely to significantly modify health risks due to use of metal-contaminated groundwater are reviewed. Methods for analytical testing of samples containing multiple metals are discussed, with special attention to analytical interferences between metals and reagents. An overview is presented of approaches to providing safe water when groundwater contains multiple metallic toxins. © 2011 The Royal Society of Chemistry.

Bacquart T.,Better Life Laboratories | Frisbie S.,Better Life Laboratories | Frisbie S.,Norwich University | Mitchell E.,Better Life Laboratories | And 6 more authors.
Metallomics | Year: 2012

Around 150 million people are at risk from arsenic-contaminated groundwater in India and Bangladesh. Multiple metal analysis in Bangladesh has found other toxic elements above the World Health Organization (WHO) health-based drinking water guidelines which significantly increases the number of people at risk due to drinking groundwater. In this study, drinking water samples from the Bongaon area (North 24 Parganas district, West Bengal, India) were analyzed for multiple metal contamination in order to evaluate groundwater quality on the neighbourhood scale. Each sample was analyzed for arsenic (As), boron (B), barium (Ba), chromium (Cr), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), and uranium (U). Arsenic was found above the WHO health-based drinking water guideline in 50% of these tubewells. Mn and B were found at significant concentrations in 19% and 6% of these tubewells, respectively. The maps of As, Mn, and B concentrations suggest that approximately 75% of this area has no safe tubewells. The concentrations of As, Mn, B, and many other toxic elements are independent of each other. The concentrations of Pb and U were not found above WHO health-based drinking water guidelines but they were statistically related to each other (p-value = 0.001). An analysis of selected isotopes in the Uranium, Actinium, and Thorium Radioactive Decay Series revealed the presence of thorium (Th) in 31% of these tubewells. This discovery of Th, which does not have a WHO health-based drinking water guideline, is a potential public health challenge. In sum, the widespread presence and independent distribution of other metals besides As must be taken into consideration for drinking water remediation strategies involving well switching or home-scale water treatment. This journal is © 2012 The Royal Society of Chemistry.

Bacquart T.,Better Life Laboratories | Frisbie S.,Better Life Laboratories | Frisbie S.,Norwich University | Mitchell E.,Better Life Laboratories | And 3 more authors.
Science of the Total Environment | Year: 2015

In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic substances. © 2015 Elsevier B.V.

Discover hidden collaborations