Time filter

Source Type

Beijing, China

Jiang P.,CAS Institute of Zoology | Wang J.,CAS Institute of Zoology | Zhang J.,Beijing Zoo | Dai J.,CAS Institute of Zoology
Journal of Environmental Sciences (China) | Year: 2016

Pentachlorophenol (PCP), a priority pollutant due to its persistence and high toxicity, has been used worldwide as a pesticide and biocide. To understand the adverse effects of PCP, adult male white-rumped munias (Lonchura striata) were orally administrated commercial PCP mixed with corn oil at dosages of 0, 0.05, 0.5, and 5. mg/(kg·day) for 42. day. Gas chromatography-mass spectrometry (GC-MS) analysis found that PCP was preferentially accumulated in the kidney rather than in the liver and muscle in all exposure groups. To examine the function of CYP1A in pollutant metabolism, we isolated two full-length cDNA fragments (designated as CYP1A4 and CYP1A5) from L. striata liver using reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. PCP induced the expression of CYP1A5, although no obvious change was observed in CYP1A4 expression. Furthermore, PCP significantly elevated the activities of ethoxyresorufin O-deethylase and methoxyresorufin O-demethylase and decreased the activity of benzyloxy-trifluoromethyl-coumarin, with no significant responses observed in benzyloxyresorufin O-debenzylase. PCP induced significant changes in antioxidant enzyme (superoxide dismutase and catalase) activities and malondialdehyde content, but decreased glutathione peroxidase (GSH-Px) and glutathione S-transferase activities and GSH content in the liver of L. striata. The present study demonstrated that PCP had hepatic toxic effects by affecting CYP1As and anti-oxidative status. © 2016. Source

Yang M.,German Primate Center | Yang Y.,Fanjingshan National Nature Reserve | Cui D.,Beijing Zoo | Fickenscher G.,German Primate Center | And 3 more authors.
American Journal of Physical Anthropology | Year: 2012

The Guizhou snub-nosed monkey (Rhinopithecus brelichi) is a primate species endemic to the Wuling Mountains in southern China. With a maximum of 800 wild animals, the species is endangered and one of the rarest Chinese primates. To assess the genetic diversity within R. brelichi and to analyze its genetic population structure, we collected fecal samples from the wild R. brelichi population and sequenced the hypervariable region I of the mitochondrial control region from 141 individuals. We compared our data with those from the two other Chinese snub-nosed species (R. roxellana, R. bieti) and reconstructed their phylogenetic relationships and divergence times. With only five haplotypes and a maximum of 25 polymorphic sites, R. brelichi shows the lowest genetic diversity in terms of haplotype diversity (h), nucleotide diversity (π), and average number of pairwise nucleotide differences (Π). The most recent common ancestor of R. brelichi lived ∼0.36 million years ago (Ma), thus more recently than those of R. roxellana (∼0.91 Ma) and R. bieti (∼1.33 Ma). Phylogenetic analysis and analysis of molecular variance revealed a clear and significant differentiation among the three Chinese snub-nosed monkey species. Population genetic analyses (Tajima's D, Fu's F s, and mismatch distribution) suggest a stable population size for R. brelichi. For the other two species, results point in the same direction, but population substructure possibly introduces some ambiguity. Because of the lower genetic variation, the smaller population size and the more restricted distribution, R. brelichi might be more vulnerable to environmental changes or climate oscillations than the other two Chinese snub-nosed monkey species. Copyright © 2011 Wiley Periodicals, Inc. Source

Shan L.,CAS Institute of Zoology | Hu Y.,CAS Institute of Zoology | Zhu L.,CAS Institute of Zoology | Yan L.,CAS Institute of Zoology | And 5 more authors.
Molecular Biology and Evolution | Year: 2014

The captive genetic management of threatened species strives to preserve genetic diversity and avoid inbreeding to ensure populations remain available, healthy, and viable for future reintroduction. Determining and responding to the genetic status of captive populations is therefore paramount to these programs. Here, we genotyped 19 microsatellite loci for 240 captive giant pandas (Ailuropoda melanoleuca) (∼64% of the captive population) from four breeding centers, Wolong (WL), Chengdu (CD), Louguantai (LGT), and Beijing (BJ), and analyzed 655 bp of mitochondrial DNA control region sequence for 220 of these animals. High levels of genetic diversity and low levels of inbreeding were estimated in the breeding centers, indicating that the captive population is genetically healthy and deliberate further genetic input from wild animals is unnecessary. However, the LGT population faces a higher risk of inbreeding, and significant genetic structure was detected among breeding centers, with LGT-CD and WL-BJ clustering separately. Based on these findings, we highlight that: 1) the LGT population should be managed as an independent captive population to resemble the genetic distinctness of their Qinling Mountain origins; 2) exchange between CD and WL should be encouraged because of similar wild founder sources; 3) the selection of captive individuals for reintroduction should consider their geographic origin, genetic background, and genetic contribution to wild populations; and 4) combining our molecular genetic data with existing pedigree data will better guide giant panda breeding and further reduce inbreeding into the future. © 2014 The Author 2014. Source

Cao Y.-H.,Tarim University | Li A.-X.,CAS Beijing Institute of Nanoenergy and Nanosystems | Li L.-R.,Tarim University | Zhang C.-L.,Beijing Zoo
American Journal of Primatology | Year: 2015

The major histocompatibility complex is a diverse gene family that plays a crucial role in the adaptive immune system. In humans, the MHC class I genes consist of the classical loci of HLA-A, -B, and -C, and the nonclassical loci HLA-E, -F, and -G. In Platyrrhini species, few MHC class I genes have been described so far and were classified as MHC-E, MHC-F, and MHC-G, with MHC-G possibly representing a classical MHC class I locus while there were arguments about the existence of the MHC-B locus in Platyrrhini. In this study, MHC class I genes were identified in eight common marmosets (Callithrix jacchus) and two brown-headed spider monkeys (Ateles fusciceps). For common marmosets, 401 cDNA sequences were sequenced and 18 alleles were detected, including 14 Caja-G alleles and 4 Caja-B alleles. Five to eleven Caja-G alleles and one to three Caja-B alleles were detected in each animal. For brown-headed spider monkeys, 102 cDNA sequences were analyzed, and 9 new alleles were identified, including 5 Atfu-G and 4 Atfu-B alleles. Two or three Atfu-G and two Atfu-B alleles were obtained for each of animal. In phylogenetic analyses, the MHC-G and -B alleles from the two species and other Platyrrhini species show locus-specific clusters with bootstrap values of 86% and 50%. The results of pairwise sequence comparisons and an excess of non-synonymous nucleotide substitutions in the PBR region are consistent with the suggestion that Caja-G and Atfu-G may be classical MHC class I loci in the Platyrrhini species.. But it appears that MHC-B locus of the two Platyrrhini species shares features with both classical and nonclasical MHC class I loci. Our results are an important addition to the limited MHC immunogenetic information available for the Platyrrhini species. © 2015 Wiley Periodicals, Inc. Source

Li H.,China Agricultural University | Zhao G.,China Agricultural University | Cao L.,China Agricultural University | Xu K.,Beijing Zoo | Cai W.,China Agricultural University
Zootaxa | Year: 2010

The white spot assassin bug Platymeris biguttatus, a large African species is redescribed, along with male genitalia. Some biological notes on life history, nymphal instars, predatory behavior, oviposition, emergence and colonization, etc. based on laboratory rearing and observations are provided. Copyright © 2010 Magnolia Press. Source

Discover hidden collaborations