Entity

Time filter

Source Type


Patent
The New School, Xiamen University and Beijing Wantai Biological Pharmacy Enterprise Co. | Date: 2010-07-27

Provided are an ORF7 deficient varicella virus, an vaccine comprising the virus and use thereof, as well as a method for the production the virus.


Patent
Beijing Wantai Biological Pharmacy Enterprise Co. and Xiamen University | Date: 2014-04-08

The invention relates to a truncated L1 protein of the Human Papillomavirus Type 6, a virus-like particle consisting of the protein, a vaccine comprising said virus-like particle, and the use of the vaccine in the prevention of condyloma acuminatum or HPV infections.


Hou W.,Xiamen University | Yang L.,Xiamen University | Li S.,Xiamen University | Yu H.,Xiamen University | And 9 more authors.
Virus Research | Year: 2015

Echovirus 25 (E-25) is a member of the enterovirus family and a common pathogen that induces hand, foot, and mouth disease (HFMD), meningitis, skin rash, and respiratory illnesses. In this study, we constructed and characterized an infectious full-length E-25 cDNA clone derived from the XM0297 strain, which was the first subgenotype D6 strain isolated in Xiamen, China. The 5'-Untranslated Regions (5'-UTR), P3 (3A-3B, 3D) and P3 (3C) regions of this E-25 (XM0297) strain were highly similar to EV-B77, E-16 and E-13, respectively. Our data demonstrate that the rescued E-25 viruses exhibited similar growth kinetics to the prototype virus strain XM0297. We observed the rescued viral particles using transmission electron microscope (TEM) and found them to possess an icosahedral structure, with a diameter of approximately 30. nm. The cross neutralization test demonstrated that the E-25 (XM0297) strain immune serum could not neutralize EV-A71, CV-A16 or CV-B3; likewise, the EV-A71 and CV-A16 immune serum could not neutralize E-25 (XM0297). The availability of this infectious clone will greatly enhance future virological investigations and possible vaccine development against E-25. © 2015 Elsevier B.V.. Source


Hou W.,Xiamen University | Yang L.,Xiamen University | He D.,Xiamen University | Zheng J.,Xiamen University | And 7 more authors.
Journal of Virological Methods | Year: 2015

Coxsackievirus A16 (CA16) is one of the major pathogens responsible for hand, foot and mouth disease (HFMD). The assessment of the humoral immunity response is indispensable in the development of vaccines against enteroviruses. The neutralization test based on the inhibition of cytopathic effects (Nt-CPE) is a common method for measuring neutralizing antibodies against CA16. However, an efficient neutralization test needs to be developed for seroepidemiological surveys and clinical trials of CA16 vaccines because Nt-CPE is time-consuming and labor-intensive. In this study, a high-throughput neutralization test for CA16 based on the enzyme-linked immunospot assay (Nt-ELISPOT) was developed. The monoclonal antibody 7D10, which reacted with the viral protein VP1, was used to detect the cells infected with CA16. The neutralizing titers of sera were proven to be unchanged over an infectious dose range from 10 to 10,000TCID50 per well. The Nt-ELISPOT results correlated well with the Nt-CPE results (R2=0.9250), and the detection period was shortened from five days to approximately 30h. Overall, the Nt-ELISPOT is a reliable and efficient method for measuring neutralizing antibodies against CA16. © 2015 Elsevier B.V. Source


Zhu R.,Xiamen University | Liu J.,Xiamen University | Chen C.,Xiamen University | Ye X.,Beijing Wantai Biological Pharmacy Enterprise Co. | And 6 more authors.
Vaccine | Year: 2016

Varicella-zoster virus (VZV) is a highly infectious agent of varicella and herpes zoster (HZ). Vaccination is by far the most effective way to prevent these diseases. More safe, stable and efficient vaccines, such as epitope-based vaccines, now have been increasingly investigated by many researchers. However, only a few VZV neutralizing epitopes have been identified to date. We have previously identified a linear epitope between amino acid residues 121 and 135 of gE. In this study, we validated that this epitope is highly conserved amongst different VZV strains that covered five existing phylogenetic clades with an identity of 100%. We evaluated the immunogenicity of the recombinant hepatitis B virus core (HBc) virus-like particles (VLPs) which included amino acids (121-135). VZV-gE-specific antibodies were detected in immunized mouse serum using ELISA. The anti-peptide antiserum positively detected VZV via Western blot and immunofluorescent staining assays. More importantly, these peptides could neutralize VZV, indicating that these peptides represented neutralizing epitopes. These findings have important implications for the development of epitope-based protective VZV vaccines. © 2016 Elsevier Ltd. Source

Discover hidden collaborations