Entity

Time filter

Source Type


Liu S.,China Agricultural University | Ren F.,China Agricultural University | Sun E.,Beijing Laboratory for Food Quality and Safety | Guo H.,China Agricultural University
Journal of Biotechnology | Year: 2015

Bifidobacterium adolesentis BBMN23 (CGMCC No. 2264) was a probiotic strain originated from the feces of a centenarian. It is an excellent model for the study of the adaptation of genus bifidobacteria to adult human gut, which is a key factor in bifidobacterial strains that allows them to persist in gut and become useful in the food and medical industries. In the present study the complete genome sequence of BBMN23 is presented to provide insight into this strain. © 2015 Elsevier B.V.


Sun E.,China Agricultural University | Ren F.,China Agricultural University | Liu S.,Beijing Laboratory for Food Quality and Safety | Guo H.,China Agricultural University
Journal of Biotechnology | Year: 2015

Bifidobacterium animalis subsp. lactis A6 (BAA6) (CGMCC No. 9273) was a probiotic strain isolated from the feces of a centenarian. Previous study showed that BAA6 had high acid resistance to low pH which is a critical factor influencing its healthy benefits. Elaborating the stress resistant mechanisms of bifidobacteria is important to extensively exploit this probiotic. Here, we reported the complete genome sequence of BAA6 that contains 1,958,651. bp encoding 1622 CDSs, 16 rRNA genes, 52 tRNA genes. © 2015 Elsevier B.V.


Zhang H.,China Agricultural University | Jiang L.,China Agricultural University | Guo H.,China Agricultural University | Liu X.,Beijing Laboratory for Food Quality and Safety | And 3 more authors.
Molecular Nutrition and Food Research | Year: 2013

Scope: We assessed the effects of milk proteins and fats, alone and in combination, on the absorption of phenolic acids and the change in plasma antioxidant capacity after jujube juice intake in humans. Methods and results: Twenty volunteers received the following four treatments each in a 4 × 4 Latin square design with a minimum 1 week interval: 200 mL of jujube juice plus 200 mL of (1) water; (2) whole milk; (3) skimmed milk; or (4) milk fat. The results showed that skimmed milk extended the time to reach maximum increase of plasma phenolic acids concentrations and plasma antioxidant capacity. However, neither the skimmed milk nor the milk fat had a significant effect on the absorption of phenolic acids. In contrast, whole milk significantly reduced the absorption of phenolic acids and the increase in plasma antioxidant capacity (p < 0.05). In vitro results suggested the formation of complexes during digestion that involved milk proteins, milk fats, and phenolic acids, which were responsible for the inhibitory effect of whole milk. Conclusion: Milk proteins and fats together, but not alone, are responsible for the inhibitory effect of milk on the absorption of phenolic acids and the change in plasma antioxidant capacity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Wang P.,China Agricultural University | Wang P.,Beijing Laboratory for Food Quality and Safety | Jin S.,China Agricultural University | Jin S.,Beijing Laboratory for Food Quality and Safety | And 2 more authors.
Food Chemistry | Year: 2015

The effects of lactose on the changes in the composition and size of casein micelles induced by high-pressure treatment and the related mechanism of action were investigated. Dispersions of ultracentrifuged casein micelle pellets with 0-10% (w/v) lactose were subjected to high pressure (400 MPa) at 20 °C for 40 min. The results indicated that the level of non-sedimentable caseins was positively related to the amount of lactose added prior to pressure treatment, and negatively correlated to the size. A mechanism for the pressure-induced, lactose-dependent changes in the casein micelles is proposed. Lactose inhibits the hydrophobic interactions between the micellar fragments during or after pressure release, through the hydrophilic layer formed by their hydrogen bonds around the micellar fragments. In addition, lactose does not favour the association between calcium and the casein aggregates after pressure release. Due to these two functions, lactose inhibited the formation of larger micelles after pressure treatment. © 2014 Elsevier Ltd. All rights reserved.


Yu X.,China Agricultural University | Wen K.,China Agricultural University | Wang Z.,China Agricultural University | Zhang X.,China Agricultural University | And 5 more authors.
Analytical Chemistry | Year: 2016

Here, we describe a general bioluminescence resonance energy transfer (BRET) homogeneous immunoassay based on quantum dots (QDs) as the acceptor and Renilla luciferase (Rluc) as the donor (QD-BRET) for the determination of small molecules. The ratio of the donor-acceptor that could produce energy transfer varied in the presence of different concentrations of free enrofloxacin (ENR), an important small molecule in food safety. The calculated Förster distance (R0) was 7.86 nm. Under optimized conditions, the half-maximal inhibitory concentration (IC50) for ENR was less than 1 ng/mL and the linear range covered 4 orders of magnitude (0.023 to 25.60 ng/mL). The cross-reactivities (CRs) of seven representative fluoroquinolones (FQs) were similar to the data obtained by an enzyme-linked immunosorbent assay (ELISA). The average intra- and interassay recoveries from spiked milk of were 79.8-118.0%, and the relative standard deviations (RSDs) were less than 10%, meeting the requirement of residue detection, which was a satisfactory result. Furthermore, we compared the influence of different luciferase substrates on the performance of the assay. Considering sensitivity and stability, coelenterazine-h was the most appropriate substrate. The results from this study will enable better-informed decisions on the choice of Rluc substrate for QD-BRET systems. For the future, the QD-BRET immunosensor could easily be extended to other small molecules and thus represents a versatile strategy in food safety, the environment, clinical diagnosis, and other fields. © 2016 American Chemical Society.

Discover hidden collaborations