Beijing Laboratory for Food Quality and Safety

Beijing, China

Beijing Laboratory for Food Quality and Safety

Beijing, China
Time filter
Source Type

Zang J.,China Agricultural University | Chen H.,China Agricultural University | Zhao G.,China Agricultural University | Wang F.,China Agricultural University | And 2 more authors.
Critical Reviews in Food Science and Nutrition | Year: 2017

Ferritin is a class of naturally occurring iron storage proteins, which is distributed widely in animal, plant, and bacteria. It usually consists of 24 subunits that form a hollow protein shell with high symmetry. One holoferritin molecule can store up to 4500 iron atom within its inner cavity, and it becomes apoferritin upon removal of iron from the cavity. Recently, scientists have subverted these nature functions and used reversibly self-assembled property of apoferritin cage controlled by pH for the encapsulation and delivery of bioactive nutrients or anticancer drug. In all these cases, the ferritin cages shield their cargo from the influence of external conditions and provide a controlled microenvironment. More importantly, upon encapsulation, ferritin shell greatly improved the water solubility, thermal stability, photostability, and cellular uptake activity of these small bioactive compounds. This review aims to highlight recent advances in applications of ferritin cage as a novel vehicle in the field of food science and nutrition. Future outlooks are highlighted with the aim to suggest a research line to follow for further studies. © 2017 Taylor & Francis Group, LLC.

Fang B.,China Agricultural University | Fang B.,Academy of State Administration of Grain | Zhang M.,Beijing Technology and Business University | Tian M.,China Agricultural University | And 4 more authors.
Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids | Year: 2014

α-Lactalbumin (α-LA) can bind oleic acid (OA) to form HAMLET-like complexes, which exhibited highly selective anti-tumor activity in vitro and in vivo. Considering the structural similarity to α-LA, we conjectured that lactoferrin (LF) could also bind OA to obtain a complex with anti-tumor activity. In this study, LF-OA was prepared and its activity and structural changes were compared with α-LA-OA. The anti-tumor activity was evaluated by methylene blue assay, while the apoptosis mechanism was analyzed using flow cytometry and Western blot. Structural changes of LF-OA were measured by fluorescence spectroscopy and circular dichroism. The interactions of OA with LF and α-LA were evaluated by isothermal titration calorimetry (ITC). LF-OA was obtained by heat-treatment at pH 8.0 with LD50 of 4.88, 4.95 and 4.62 μM for HepG2, HT29, and MCF-7 cells, respectively, all of which were 10 times higher than those of α-LA-OA. Similar to HAMLET, LF-OA induced apoptosis in tumor cells through both death receptor- and mitochondrial-mediated pathways. Exposure of tryptophan residues and the hydrophobic regions as well as the loss of tertiary structure were observed in LF-OA. Besides these similarities, LF showed different secondary structure changes when compared with α-LA, with a decrease of α-helix and β-turn and an increase of β-sheet and random coil. ITC results showed that there was a higher binding number of OA to LF than to α-LA, while both of the proteins interacted with OA through van der Waals forces and hydrogen bonds. This study provides a theoretical basis for further exploration of protein-OA complexes. © 2013 The Authors.

Zhang W.,China Agricultural University | Zhang W.,Beijing Laboratory for Food Quality and Safety | Guo H.,China Agricultural University | Guo H.,Beijing Laboratory for Food Quality and Safety | And 9 more authors.
Journal of Bone and Mineral Research | Year: 2014

Lactoferrin (LF) has been established as a potent anabolic factor for bone health both in vivo and in vitro. However, the molecular mechanisms underlying LF's action are still largely unknown. Here, we explore the signaling pathways that mediate LF's beneficial effect on osteoblast differentiation. In primary osteoblast and preosteoblast MC3T3-E1, LF promoted alkaline phosphatase (ALP) activity, osteocalcin (OCN) secretion, and mineralization. Along with this enhanced osteogenic differentiation, activation of p38 mitogen-activated protein kinase (MAPK) was detected in LF-treated MC3T3-E1 cells. Downregulating p38 with selective inhibitor SB203580 or p38α small interfering RNA (siRNA) attenuated the effect of LF on osteogenesis. Furthermore, knockdown of p38α significantly decreased LF-induced Runt-related transcription factor 2 (Runx2) phosphorylation. According to previous studies and our results, we speculated that LF-induced osteoblast proliferation and differentiation were two relatively separate processes controlled by extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 pathways, respectively. Besides p38 MAPK activation, protein kinase A (PKA) was also activated in MC3T3-E1 cells. PKA inhibitor H89 significantly inhibited LF-induced p38 activation, ALP activity, and OCN secretion, indicating that PKA possibly acted as an upstream kinase of p38. In order to further identify the role of LF's receptor low-density lipoprotein receptor-related protein 1 (LRP1), we constructed LRP1 stable-knockdown MC3T3-E1 cells. Neither LRP1 antagonist receptor associated protein (RAP), nor LRP1 knockdown approach could attenuate the LF-induced osteogenesis, implying that LF stimulated osteoblast differentiation via an LRP1-independent pathway. Taken together, the present work indicated that LF stimulated MC3T3-E1 preosteoblast differentiation mainly through LRP1-independent PKA and p38 signaling pathways. These results provided the first evidence of the signaling mechanisms of LF's effect on osteoblast differentiation. © 2014 American Society for Bone and Mineral Research.

Wang P.,China Agricultural University | Wang P.,Beijing Laboratory for Food Quality and Safety | Jin S.,China Agricultural University | Jin S.,Beijing Laboratory for Food Quality and Safety | And 2 more authors.
Food Chemistry | Year: 2015

The effects of lactose on the changes in the composition and size of casein micelles induced by high-pressure treatment and the related mechanism of action were investigated. Dispersions of ultracentrifuged casein micelle pellets with 0-10% (w/v) lactose were subjected to high pressure (400 MPa) at 20 °C for 40 min. The results indicated that the level of non-sedimentable caseins was positively related to the amount of lactose added prior to pressure treatment, and negatively correlated to the size. A mechanism for the pressure-induced, lactose-dependent changes in the casein micelles is proposed. Lactose inhibits the hydrophobic interactions between the micellar fragments during or after pressure release, through the hydrophilic layer formed by their hydrogen bonds around the micellar fragments. In addition, lactose does not favour the association between calcium and the casein aggregates after pressure release. Due to these two functions, lactose inhibited the formation of larger micelles after pressure treatment. © 2014 Elsevier Ltd. All rights reserved.

PubMed | Beijing Laboratory for Food Quality and Safety and China Agricultural University
Type: | Journal: Journal of biotechnology | Year: 2015

Bifidobacterium adolesentis BBMN23 (CGMCC No. 2264) was a probiotic strain originated from the feces of a centenarian. It is an excellent model for the study of the adaptation of genus bifidobacteria to adult human gut, which is a key factor in bifidobacterial strains that allows them to persist in gut and become useful in the food and medical industries. In the present study the complete genome sequence of BBMN23 is presented to provide insight into this strain.

PubMed | Beijing Laboratory for Food Quality and Safety and China Agricultural University
Type: | Journal: Journal of biotechnology | Year: 2015

Bifidobacterium animalis subsp. lactis A6 (BAA6) (CGMCC No. 9273) was a probiotic strain isolated from the feces of a centenarian. Previous study showed that BAA6 had high acid resistance to low pH which is a critical factor influencing its healthy benefits. Elaborating the stress resistant mechanisms of bifidobacteria is important to extensively exploit this probiotic. Here, we reported the complete genome sequence of BAA6 that contains 1,958,651 bp encoding 1622 CDSs, 16 rRNA genes, 52 tRNA genes.

PubMed | Beijing Laboratory for Food Quality and Safety, Cornell University and China Agricultural University
Type: | Journal: BMC microbiology | Year: 2015

Bifidobacteria are key commensals in human gut, and their abundance is associated with the health of their hosts. Although they are dominant in infant gut, their number becomes lower in adult gut. The changes of the diet are considered to be main reason for this difference. Large amounts of whole-genomic sequence data of bifidobacteria make it possible to elucidate the genetic interpretation of their adaptation to the nutrient environment. Among the nutrients in human gut, starch is a highly fermentable substrate and can exert beneficial effects by increasing bifidobacteria and/or being fermented to short chain fatty acids.In order to determine the potential substrate preference of bifidobacteria, we compared the glycoside hydrolase (GH) profiles of a pooled-bifidobacterial genome (PBG) with a representative microbiome (RM) of the human gut. In bifidobacterial genomes, only 15% of GHs contained signal peptides, suggesting their weakness in utilization of complex carbohydrate, such as plant cell wall polysaccharides. However, compared with other intestinal bacteria, bifidobacteiral genomes encoded more GH genes for degrading starch and starch hydrolysates, indicating that they have genetic advantages in utilizing these substrates. Bifidobacterium longum subsp. longum BBMN68 isolated from centenarians faeces was used as a model strain to further investigate the carbohydrate utilization. The pathway for degrading starch and starch hydrolysates was the only complete pathway for complex carbohydrates in human gut. It is noteworthy that all of the GH genes for degrading starch and starch hydrolysates in the BBMN68 genome were conserved in all studied bifidobacterial strains. The in silico analyses of BBMN68 were further confirmed by growth experiments, proteomic and real-time quantitative PCR (RT-PCR) analyses.Our results demonstrated that starch and starch hydrolysates were the most universal and favorable carbon sources for bifidobacteria. The low amount of these carbon sources in adult intestine was speculated to contribute to the low relative abundance of bifidobacteria.

Wang Z.,China Agricultural University | Wang Z.,Beijing Laboratory For Food Quality and Safety | Zhang H.,China Agricultural University | Ni H.,China Agricultural University | And 4 more authors.
Analytica Chimica Acta | Year: 2014

In the paper, an enzyme-linked immunosorbent immunoassay (ELISA) for detection of enrofloxacin was described using one new derivative of enrofloxacin as coating hapten, resulting in surprisingly high sensitivity and specificity. Incorporation of aminobutyric acid (AA) in the new derivative of enrofloxacin had decreased the IC50 of the ELISA for enrofloxacin from 1.3μgL-1 to as low as 0.07μgL-1. The assay showed neglect cross-reactivity for other fluoroquinolones but ofloxacin (8.23%), marbofloxacin (8.97%) and pefloxacin (7.29%). Analysis of enrofloxacin fortified chicken muscle showed average recoveries from 81 to 115%. The high sensitivity and specificity of the assay makes it a suitable screening method for the determination of low levels of enrofloxacin in chicken muscle without clean-up step. © 2014 Elsevier B.V.

PubMed | Beijing Laboratory for Food Quality and Safety and China Agricultural University
Type: | Journal: Scientific reports | Year: 2015

Aflatoxin-B1 (AFB1), a hepatocarcinogenic mycotoxin, was demonstrated to induce the high rate of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the regulation of several biological processes in HCC. However, the function of miRNAs in AFB1-induced HCC has received a little attention. Here, we applied Illumina deep sequencing technology for high-throughout profiling of microRNAs in HepG2 cells lines after treatment with AFB1. Analysis of the differential expression profile of miRNAs in two libraries, we identified 9 known miRNAs and 1 novel miRNA which exhibited abnormal expression. KEGG analysis indicated that predicted target genes of differentially expressed miRNAs are involved in cancer-related pathways. Down-regulated of Drosha, DGCR8 and Dicer 1 indicated an impairment of miRNA biogenesis in response to AFB1. miR-34a was up-regulated significantly, down-regulating the expression of Wnt/-catenin signaling pathway by target gene -catenin. Anti-miR-34a can significantly relieved the down-regulated -catenin and its downstream genes, c-myc and Cyclin D1, and the S-phase arrest in cell cycle induced by AFB1 can also be relieved. These results suggested that AFB1 might down-regulate Wnt/-catenin signaling pathway in HepG2 cells by up-regulating miR-34a, which may involve in the mechanism of liver tumorigenesis.

PubMed | Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety and China Agricultural University
Type: Journal Article | Journal: Analytical and bioanalytical chemistry | Year: 2016

Microcystins (MCs) and nodularin (NOD) are cyanobacterial hepatotoxins that can greatly harm human health. Multi-analyte immunoassays provide efficient and cheap methods of screening these toxins. To develop a multi-analyte immunoassay, an antibody with both broad specificity and high affinity for structurally similar algal toxins is urgently needed. In this study, microcystin-leucine-arginine (MC-LR) and NOD were conjugated to carrier proteins using a one-step active ester (AE) method and multistep thiol-ene click chemistry and glutaraldehyde method, respectively. The immunogens obtained from these two conjugation methods were evaluated for their effectiveness in producing antibodies. The results demonstrated that the antisera derived from AE immunogens showed better performance in terms of affinity and titer. Using this simple AE method, we prepared a new immunogen for NOD and successfully produced a monoclonal antibody (mAb), 2G5, which could recognize not only NOD but also all eight of the tested MCs (MC-LR, MC-RR, MC-YR, MC-WR, MC-LA, MC-LF, MC-LY, and MC-LW) with high sensitivity and improved uniform affinities (0.23IC500.68ngmL(-1)) compared with previously described mAbs. Under optimal conditions, one indirect competitive enzyme-linked immunosorbent assay was developed based on mAb2G5 for the detection of MC-LR and NOD, with limits of detection of 0.16 and 0.10gL(-1), respectively, and a recovery of 62-86% with a coefficient of variation below 12.6% in water samples.

Loading Beijing Laboratory for Food Quality and Safety collaborators
Loading Beijing Laboratory for Food Quality and Safety collaborators