Beijing Institute of Liver Disease

Beijing, China

Beijing Institute of Liver Disease

Beijing, China
SEARCH FILTERS
Time filter
Source Type

Ma J.,Beijing Institute of Liver Disease | Ma J.,Beijing Baihuirui Bio Technologies Inc | Zhang Y.,Beijing Baihuirui Bio Technologies Inc | Chen X.,Capital Medical University | And 9 more authors.
PLoS ONE | Year: 2013

The role of preexisting minority drug-resistance mutations in treatment failure has not been fully understood in chronic hepatitis B patients. To understand mechanisms of drug resistance, we analyzed drug-resistance mutations in 46 treatment-failure patients and in 29 treatment-naïve patients and determined linkage patterns of the drug-resistance mutations in individual viral genomes using a highly sensitive parallel allele-specific sequencing (PASS) method. Lamivudine resistance (LAMr) mutations were predominant in treatment-failure patients, irrespective of the inclusion of LAM in the regimen. The primary LAMr mutations M204V and M204I were detected in 100% and 30% of the treatment-failure patients, respectively. Two secondary LAMr mutations (L180M and V173L) were also found in most treatment-failure patients (87% and 78%, respectively). The linkages containing these three mutations dominated the resistant viruses. Importantly, minority LAMr mutations present in <2% of the viral population were detected in 83% of the treatment-naïve patients. Moreover, the low-frequency same linked LAMr mutations (<0.15%) were detected in 24% of the treatment-naïve patients. Our results demonstrate that the selection of preexisting minority linked LAMr mutations may be an important mechanism for the rapid development of LAM resistance, caution the continuous use of LAM to treat drug-experienced and -naïve hepatitis B patients, and underline the importance of the detection of minority single and linked drug-resistance mutations before initiating antiviral therapy. © 2013 Ma et al.


Li L.,Beijing Institute of Liver Disease | Li L.,Capital Medical University | Jin R.,Capital Medical University | Zhang X.,Oregon Health And Science University | And 7 more authors.
Hepatology | Year: 2012

Glypican-3 (GPC3) is a heparan sulfate proteoglycan that has an important role in cell growth and differentiation, and its function in tumorigenesis is tissue-dependent. In hepatocellular carcinoma (HCC), the overexpression of GPC3 has been demonstrated to be a reliable diagnostic indicator. However, the mechanisms that regulate the expression and function of GPC3 remain unclear. The oncoprotein c-Myc is a transcription factor that plays a significant role in more than 50% of human tumors. We report here that GPC3 is a transcriptional target of c-Myc and that the expression of c-Myc is also regulated by GPC3, thus forming a positive feedback signaling loop. We found that the overexpression of c-Myc could induce GPC3 promoter-dependent luciferase activity in luciferase reporter experiments. Furthermore, mutational analysis identified c-Myc-binding sites within the GPC3 promoter. The exogenous overexpression of c-Myc increased the endogenous messenger RNA (mRNA) and protein levels of GPC3. Chromatin immunoprecipitation experiments revealed the binding of c-Myc to the endogenous GPC3 promoter, indicating that c-Myc can directly transcriptionally activate GPC3. Interestingly, GPC3 can also elevate c-Myc expression. Overexpression of GPC3 increased c-Myc protein levels, whereas the knockdown of GPC3 reduced c-Myc expression levels. Lastly, the elevated levels of c-Myc correlate with the overexpression of GPC3 in human HCC samples. Conclusion: These data provide new mechanistic insight into the roles of GPC3 and of c-Myc in the development of HCC. © 2012 American Association for the Study of Liver Diseases.


Shi Y.,Capital Medical University | Wei F.,Capital Medical University | Wei F.,Beijing Institute of Liver Disease | Hu D.,Dalian Medical University | And 6 more authors.
Journal of Medical Virology | Year: 2012

Hepatitis B virus (HBV) can evolve by mutations in the major hydrophilic region (MHR) of the HBV surface antigen (HBsAg) to permit its escape from neutralization by antibodies such as HBV surface antibody (anti-HBs) and from host immune responses. This study investigated the prevalence and pattern of MHR mutations in North China and the clinical correlations of these mutations. The MHRs of 161 HBsAg-positive patients were amplified using nested PCR, and directly sequenced to identify MHR mutations. It was showed that among the 161 patients infected with HBV genotype C in North China, the overall frequency of MHR mutation was 46.6%. Furthermore, MHR mutations were associated with high white blood cell counts (P=0.025), high bilirubin levels (P=0.048), and cirrhosis (P=0.010). The most frequent mutations in patients with both HBsAg-positive and anti-HBs-positive were located in subregion 1 and 3 of MHR, specifically, residue Q101 (29.9%) and I126 (70.6%), which was different from the mutation pattern found in Western Europe and the United States. Taken together, these data indicated important virological and clinical aspects of HBV evolution in terms of the surface gene of genotype C, which might be important for its response to the currently available HBV vaccine. © 2012 Wiley Periodicals, Inc.


Jin R.,Capital Medical University | Sun Y.,Capital Medical University | Qi X.,Chinese PLA General Hospital | Zhang H.,Capital Medical University | And 5 more authors.
DNA Repair | Year: 2011

The X-ray repair cross complementing group 1 (XRCC1) protein is involved in DNA base excision repair and its expression varies during the cell cycle. Although studies have demonstrated that rapid XRCC1-dependent single-strand break repair (SSBR) takes place specifically during S/G 2 phases, it remains unclear how it is regulated during the cell cycle. We found that XRCC1 is a direct regulatory target of E2F1 and further investigated the role of XRCC1 in DNA repair during the cell cycle. Saos2 primary osteosarcoma cells stably transfected with inducible E2F1-wt or mutant E2F1-132E were treated with hydroxurea (HU) for 36h and were subsequently withdrawn HU for 2-24h to test whether cell-cycle-dependent DNA SSBR requires E2F1-mediated upregulation of XRCC1. We found that SSBR activity, as determined using a qPCR-base method, was correlated with E2F1 levels at different phases of the cell cycle. XRCC1-positive (AA8) and negative (EM9) CHO cells were used to demonstrate that the alterations in SSBR were mediated by XRCC1. The results indicate that E2F1-mediated regulation of XRCC1 is required for cell-cycle-dependent SSBR predominantly in G 1/S phases. Our observations have provided new mechanistic insight for understanding the role of E2F1 in the maintenance of genomic stability and cell survival during the cell cycle. The regulation of XRCC1 by E2F1 during cell-cycle-dependent SSBR might be an important aspect for practical consideration for resolving the problem of drug resistance in tumor chemotherapies. © 2011 Elsevier B.V.


Yuan L.,Capital Medical University | Yuan L.,AIDS Research Beijing Key Laboratory No BZ0089 | Qiao L.,Capital Medical University | Qiao L.,AIDS Research Beijing Key Laboratory No BZ0089 | And 12 more authors.
Journal of NeuroVirology | Year: 2013

In the current era of highly active antiretroviral therapy (HAART), the incidence of HIV dementia has declined, but the prevalence of HIV-associated neurocognitive disorder (HAND) remains high. HIV-induced systemic and localized inflammation is considered to be one of the mechanisms of HAND. Changes in cytokine levels in the cerebrospinal fluid (CSF) during HIV infection might help to identify HAND. To investigate whether the cytokine profile of the CSF during HIV infection could be used as a biomarker of HAND, we compared cytokine levels in the CSF of HIV-infected cases with and without neurocognitive impairment. Cytokine concentrations in the CSF were measured by quantification bioassays (Luminex xMAP). HIV-infected cases with neurocognitive impairment demonstrated higher levels of interleukin (IL)-8, monocyte chemotactic protein (MCP)-1, induced protein (IP)-10, and granulocyte colony-stimulating factor (G-CSF) in the CSF than those without neurocognitive impairment (G-CSF (p = 0.0003), IL-8 (p = 0.0046), IP-10 (p < 0.0001), and MCP-1 (p < 0.0001)). There was no significant impact of HAART on cytokine levels in the CSF, except for IP-10, which was higher in HAART-treated patients with impaired cognition (p = 0.0182). Findings from this preliminary study suggest that elevated levels of the cytokines IL-8, MCP-1, G-CSF, and IP-10 in the CSF are associated with neurocognitive impairment in HIV infection, and these cytokines likely represent a biomarker profile for HAND. © 2013 Journal of NeuroVirology, Inc.


Zhang Y.,Capital Medical University | Zhang Y.,Beijing Institute of Liver Disease | Wang M.,Capital Medical University | Li H.,Capital Medical University | And 7 more authors.
Brain Research | Year: 2012

Oxidative stress has been suggested to play a key role in the neuropathogenesis of HIV infection. HIV proteins (gp120, Tat) and proinflammatory cytokines can trigger the production of reactive oxygen species (ROS), resulting in DNA and RNA lesions. Among all the lesions induced by ROS, one of the most abundant lesions in DNA and RNA is 8-hydroxydeoxyguanosine (8-oxoG). Here, we studied accumulated DNA oxidative damage induced by ROS in the central nervous system (CNS) in tissue from neuro-AIDS patients. The frontal cortex of autopsy tissue from HIV-1 infected patients was adopted for analysis for HIV-1 subtype, nuclear and mitochondrial DNA lesions by immunofluorescence staining, qPCR and sequencing of PCR cloning. This study provides evidence that HIV infection in the CNS leads to nuclear and mitochondrial genomic DNA damage in the brain. High level of nuclear and mtDNA 8-oxoG damage were identified in the cortex autopsy tissue of HAND patients. Increased accumulation of mtDNA mutations and depletion occurs in brain tissue in a subset of HAND cases, and is significantly different from that observed in control cases. These findings suggest that higher level of ROS in the CNS of HAND patients would contribute to the HIV induced neuro-inflammation and apoptosis of neuronal and glial cells. © 2012 Elsevier B.V. All rights reserved.


Ren F.,Beijing Institute of Liver Disease
Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology | Year: 2012

To determine the mechanism underlying the therapeutic activities of glycogen synthase kinase 3b (GSK3b) against hepatic ischemia-reperfusion (H-IR) injury by investigating the inhibitive effects of GSK3b on inflammation mediated by Toll-like receptor 4 (TLR4). C57BL/6 male mice were subjected to 90 min of warm liver cephalad lobe ischemia, followed by reperfusion for various lengths of time. The mice were divided into three groups: the H-IR untreated model (control group), and the H-IR inflammation-induced models that received an intraperitoneal injection of purified lipopolysaccharide (LPS) endotoxin alone (inflammation group) or with pretreatment of the SB216763 GSK3b-specific inhibitor (intervention group). To create a parallel isolated cell system for detailed investigations of macrophages, marrow-derived stem cells were isolated from femurs of the H-IR control group of mice and used to derive primary macrophages. The cells were then divided into the same three groups as the whole mouse system: control, LPS-induced inflammation model, and inflammation model with SB216763 intervention. Differential expressions of inflammation-related proteins and genes were detected by Western blotting and real-time quantitative PCR, respectively. The phosphorylation levels of ERK, JNK and p38 MAPK were induced in liver at 1 h after reperfusion, but then steadily decreased and returned to baseline levels by 4 h after reperfusion. In addition, the phosphorylation levels of ERK and JNK were induced in macrophages at 15 min after LPS stimulation, while the phosphorylation level of p38 MAPK was induced at 1 h; SB216763 pretreatment suppressed the LPS-stimulated ERK, JNK and p38 phosphorylation in macrophages. In the mouse model, GSK3b activity was found to promote the gene expression of anti-inflammatory cytokine IL-10 (control: 0.21 ± 0.08, inflammation: 0.83 ± 0.21, intervention: 1.76 ± 0.67; F = 3.16, P = 0.027) but to significantly inhibit the gene expression of pro-inflammatory cytokines IL-12 (control: 0.11 ± 0.05, inflammation: 0.85 ± 0.11, intervention: 0.43 ± 0.10; F = 2.67, P = 0.038), TNF-a, (control: 0.052 ± 0.012, inflammation: 8.11 ± 0.98, intervention: 3.9 ± 0.82; F = 4.13, P = 0.016), IL-6 (control: 0.22 ± 0.08, inflammation: 6.37 ± 0.81, intervention: 2.11 ± 0.63; F = 3.21, P = 0.024), and IL-1b (control: 0.12 ± 0.07, inflammation: 2.51 ± 0.62, and intervention: 1.28 ± 0.33; F = 2.22, P = 0.030). Inhibition of GSK3b selectively regulates the expression of anti-inflammatory and pro-inflammatory cytokines in liver Kupffer cells (liver macrophages). This process may be one of the mechanisms underlying the ability of GSK3b to ameliorate hepatic ischemia-reperfusion injury, possibly because inhibition of pro-inflammatory cytokines may indirectly mediate liver cell apoptosis.


PubMed | Capital Medical University and Beijing Institute of Liver Disease
Type: | Journal: BioMed research international | Year: 2015

Although HAD is now rare due to HAART, the milder forms of HAND persist in HIV-infected patients. HIV-induced systemic and localized inflammation is considered to be one of the mechanisms of HAND. The levels of cytokines in CSF were associated with neurocognitive impairment in HIV infection. However, the changes of cytokines involved in cognition impairment in plasma have not been shown, and their relationships between CSF and plasma require to be addressed. We compared cytokine levels in paired CSF and plasma samples from HIV-infected individuals with or without neurocognitive impairment. Cytokine concentrations were measured by Luminex xMAP. In comparing the expression levels of cytokines in plasma and CSF, IFN-2, IL-8, IP-10, and MCP-1 were significantly higher in CSF. Eotaxin was significantly higher in plasma, whereas G-CSF showed no difference between plasma and CSF. G-CSF (P = 0.0079), IL-8 (P = 0.0223), IP-10 (P = 0.0109), and MCP-1 (P = 0.0497) in CSF showed significant difference between HIV-CI and HIV-NC group, which may indicate their relationship to HIV associated neurocognitive impairment. In addition, G-CSF (P = 0.0191) and IP-10 (P = 0.0377) in plasma were significantly higher in HIV-CI than HIV-NC. The consistent changes of G-CSF and IP-10 in paired plasma and CSF samples might enhance their potential for predicting HAND.


PubMed | Capital Medical University and Beijing Institute of Liver Disease
Type: | Journal: Advances in experimental medicine and biology | Year: 2016

Hepatitis E virus (HEV) infections are the most common cause of acute hepatitis, but they can also take a chronic course. There is no specific therapy for acute hepatitis, and current treatment is supportive. Choosing ribavirin as the first-line therapy for chronic HEV is advisable, especially in solid organ transplant patients. Pegylated interferon- has been used successfully for treatment of hepatitis E but is associated with major side effects. Cholestasis is one of the most common, but devastating, manifestations in hepatitis E. Current therapy for HEV aims to treat symptoms. Therapy generally involves several measures, such as vitamins for adequate nutrition, albumin and plasma for supporting treatment, symptomatic treatment for cutaneous pruritus, and ursodeoxycholic acid and S-adenosylmethionine, and Traditional Chinese medicine for removing jaundice. Patients with underlying liver disease may develop liver failure. For these patients, supportive treatment is the foundation. Ribavirin has successfully been used to prevent liver transplantation. Prevention and treatment of complications are important for treatment of liver failure. Liver support devices are intended to support liver function until such time as native liver function recovers or until liver transplantation. Liver transplantation is widely considered as irreplaceable and definitive treatment for acute-on-chronic liver failure, particularly for patients who do not improve with supportive measures to sustain life.


PubMed | Beijing Institute of Liver Disease
Type: Comparative Study | Journal: Hepatology (Baltimore, Md.) | Year: 2012

Glypican-3 (GPC3) is a heparan sulfate proteoglycan that has an important role in cell growth and differentiation, and its function in tumorigenesis is tissue-dependent. In hepatocellular carcinoma (HCC), the overexpression of GPC3 has been demonstrated to be a reliable diagnostic indicator. However, the mechanisms that regulate the expression and function of GPC3 remain unclear. The oncoprotein c-Myc is a transcription factor that plays a significant role in more than 50% of human tumors. We report here that GPC3 is a transcriptional target of c-Myc and that the expression of c-Myc is also regulated by GPC3, thus forming a positive feedback signaling loop. We found that the overexpression of c-Myc could induce GPC3 promoter-dependent luciferase activity in luciferase reporter experiments. Furthermore, mutational analysis identified c-Myc-binding sites within the GPC3 promoter. The exogenous overexpression of c-Myc increased the endogenous messenger RNA (mRNA) and protein levels of GPC3. Chromatin immunoprecipitation experiments revealed the binding of c-Myc to the endogenous GPC3 promoter, indicating that c-Myc can directly transcriptionally activate GPC3. Interestingly, GPC3 can also elevate c-Myc expression. Overexpression of GPC3 increased c-Myc protein levels, whereas the knockdown of GPC3 reduced c-Myc expression levels. Lastly, the elevated levels of c-Myc correlate with the overexpression of GPC3 in human HCC samples.These data provide new mechanistic insight into the roles of GPC3 and of c-Myc in the development of HCC.

Loading Beijing Institute of Liver Disease collaborators
Loading Beijing Institute of Liver Disease collaborators