Time filter

Source Type

Lu D.,China Agricultural University | Li Q.,China Agricultural University | Wu Z.,China Agricultural University | Shang S.,China Agricultural University | And 5 more authors.
PLoS ONE | Year: 2014

Lysozyme is often used as a feed additive and acts as an antimicrobial protein that enhances immune function and defends against pathogenic bacteria in pigs. In this study, we genetically added recombinant human lysozyme (rhLZ) to sow milk by somatic cell nuclear transfer and investigated whether the presence of recombinant human lysozyme can influence intestinal microbiota and mophology in sucking pigs. We generated transgenic cloned pigs and the first-generation hybrids (F1) produced high levels of rhLZ in milk. The average concentration of rhLZ was 116.34±24.46 mg/L in the milk of F1 sows, which was 1500-fold higher than that of the native pig lysozyme. In vitro, it was demonstrated that rhLZ in milk of transgenic pigs had enzyme levels at 92,272±26,413 U/mL. In a feeding experiment, a total of 40 newborn piglets were nursed by four transgenic sows and four sibling non-transgenic sows (F1), with five piglets per gilt. The piglets were allowed to nurse for 21 days and the sow milk was the only source of nutrition for the piglets. All piglets were slaughtered on postnatal day 22. Six types of bacteria were cultured and analyzed to detect the impact of rhLZ on gut microbiota. The number of Escherichia coli in the duodenum of piglets reared by transgenic sows was significantly decreased (p<0.001) and their villus height to crypt depth ratio in the intestine were increased due to the significant decrease of crypt depth in the duodenum, jejunum, and ileum (p<0.001). Together, we successfully generated rhLZ transgenic cloned pigs and elevated lysozyme level in nuring piglets. The results of the feeding experiments demonstrated that rhLZ-enhanced milk can inhibit the growth of E. coli in the duodenum and positively influence intestinal morphology without adversely affecting weight gain or piglet growth. © 2014 Lu et al.

Lu D.,China Agricultural University | Liu S.,China Agricultural University | Shang S.,China Agricultural University | Wu F.,Yunnan Agricultural University | And 7 more authors.
PLoS ONE | Year: 2015

Human lysozyme is a natural non-specific immune factor in human milk that plays an important role in the defense of breastfed infants against pathogen infection. Although lysozyme is abundant in human milk, there is only trace quantities in pig milk. Here, we successfully generated transgenic cloned pigs with the expression vector pBAC-hLF-hLZ-Neo and their first generation hybrids (F1). The highest concentration of recombinant human lysozyme (rhLZ) with in vitro bioactivity was 2759.6 ± 265.0 mg/L in the milk of F0 sows. Compared with wild-type milk, rhLZ milk inhibited growth of Escherichia coli K88 during the exponential growth phase. Moreover, rhLZ in milk from transgenic sows was directly absorbed by the intestine of piglets with no observable anaphylactic reaction. Our strategy may provide a powerful tool for large-scale production of this important human protein in pigs to improve resistance to pathogen infection. © 2015 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Ma J.,China Agricultural University | Li Q.,China Agricultural University | Li Y.,Beijing Genfucare Biotechnology Company | Wen X.,Beijing Genfucare Biotechnology Company | And 5 more authors.
Gene | Year: 2016

Human α-lactalbumin (HLA) has very high nutritional value and important physiological functions during the neonatal period. The peptides derived from HLA provide diverse health benefits including antimicrobial, antiviral, immune-modulating, and antihypertensive effects. Thus, it is worth investigating the effects on offspring development of increasing HLA in milk. In this study, we found that recombinant human α-lactalbumin (rHLA) exhibits efficient inhibition of dipeptidyl peptidase-IV (DPP-IV) activity in an in vitro simulated gastrointestinal digestion system. Using a BAC clone containing the complete HLA gene as a candidate vector, we generated two lines of transgenic cloned sows via somatic cell nuclear transfer that over-expressed rHLA. The average concentrations of rHLA in milk from the two lines of transgenic cloned sows were 2.24 ± 0.71 mg/ml and 2.67 ± 1.29 mg/ml. The feeding experiments revealed that rHLA represses dipeptidyl peptidase-IV (DPP-IV) activity in vivo. Furthermore, the piglets reared by rHLA transgenic cloned sows exhibit better performance in gain of body weight and intestine growth than the control piglets reared by non-transgenic sows. Therefore, these findings indicate that rHLA could serve as a natural precursor for a DPP-IV inhibitor, and the transgenic technology that produced the over-expression of rHLA could be a useful method for pig breeders to improve lactation performance. © 2016 .

Discover hidden collaborations