Beijing Genestone Technology Ltd.

Beijing, China

Beijing Genestone Technology Ltd.

Beijing, China
SEARCH FILTERS
Time filter
Source Type

Yang S.,Beijing Institute of Radiation Medicine | Yang S.,National Center for Protein science Beijing | Zhang X.,Beijing Genestone Technology Ltd. | Diao L.,Beijing Institute of Radiation Medicine | And 17 more authors.
Journal of Proteome Research | Year: 2015

The Chromosome-centric Human Proteome Project (C-HPP) aims to catalog genome-encoded proteins using a chromosome-by-chromosome strategy. As the C-HPP proceeds, the increasing requirement for data-intensive analysis of the MS/MS data poses a challenge to the proteomic community, especially small laboratories lacking computational infrastructure. To address this challenge, we have updated the previous CAPER browser into a higher version, CAPER 3.0, which is a scalable cloud-based system for data-intensive analysis of C-HPP data sets. CAPER 3.0 uses cloud computing technology to facilitate MS/MS-based peptide identification. In particular, it can use both public and private cloud, facilitating the analysis of C-HPP data sets. CAPER 3.0 provides a graphical user interface (GUI) to help users transfer data, configure jobs, track progress, and visualize the results comprehensively. These features enable users without programming expertise to easily conduct data-intensive analysis using CAPER 3.0. Here, we illustrate the usage of CAPER 3.0 with four specific mass spectral data-intensive problems: detecting novel peptides, identifying single amino acid variants (SAVs) derived from known missense mutations, identifying sample-specific SAVs, and identifying exon-skipping events. CAPER 3.0 is available at http://prodigy.bprc.ac.cn/caper3. © 2015 American Chemical Society.


Wang D.,Beijing Institute of Radiation Medicine | Wang D.,National Center for Protein science Beijing | Wang D.,CAS Institute of Process Engineering | Liu Z.,Beijing Institute of Radiation Medicine | And 21 more authors.
Journal of Proteome Research | Year: 2014

The Chromosome-centric Human Proteome Project (C-HPP) aims to map and annotate the entire human proteome by the "chromosome-by-chromosome" strategy. As the C-HPP proceeds, the increasing volume of proteomic data sets presents a challenge for customized and reproducible bioinformatics data analyses for mining biological knowledge. To address this challenge, we updated the previous static proteome browser CAPER into a higher version, CAPER 2.0 - an interactive, configurable and extensible workflow-based platform for C-HPP data analyses. In addition to the previous visualization functions of track-view and heatmap-view, CAPER 2.0 presents a powerful toolbox for C-HPP data analyses and also integrates a configurable workflow system that supports the view, construction, edit, run, and share of workflows. These features allow users to easily conduct their own C-HPP proteomic data analyses and visualization by CAPER 2.0. We illustrate the usage of CAPER 2.0 with four specific workflows for finding missing proteins, mapping peptides to chromosomes for genome annotation, integrating peptides with transcription factor binding sites from ENCODE data sets, and functionally annotating proteins. The updated CAPER is available at http://www.bprc.ac.cn/CAPE. © 2013 American Chemical Society.


PubMed | Beijing Genestone Technology Ltd., Beijing Institute of Radiation Medicine, Monash University and Shandong Computer Science Center National Supercomputer Center in Jinan
Type: Journal Article | Journal: Journal of proteome research | Year: 2015

The Chromosome-centric Human Proteome Project (C-HPP) aims to catalog genome-encoded proteins using a chromosome-by-chromosome strategy. As the C-HPP proceeds, the increasing requirement for data-intensive analysis of the MS/MS data poses a challenge to the proteomic community, especially small laboratories lacking computational infrastructure. To address this challenge, we have updated the previous CAPER browser into a higher version, CAPER 3.0, which is a scalable cloud-based system for data-intensive analysis of C-HPP data sets. CAPER 3.0 uses cloud computing technology to facilitate MS/MS-based peptide identification. In particular, it can use both public and private cloud, facilitating the analysis of C-HPP data sets. CAPER 3.0 provides a graphical user interface (GUI) to help users transfer data, configure jobs, track progress, and visualize the results comprehensively. These features enable users without programming expertise to easily conduct data-intensive analysis using CAPER 3.0. Here, we illustrate the usage of CAPER 3.0 with four specific mass spectral data-intensive problems: detecting novel peptides, identifying single amino acid variants (SAVs) derived from known missense mutations, identifying sample-specific SAVs, and identifying exon-skipping events. CAPER 3.0 is available at http://prodigy.bprc.ac.cn/caper3.


PubMed | Beijing Genestone Technology Ltd., Beijing Institute of Radiation Medicine, Beijing University of Chinese Medicine, CAS Beijing National Laboratory for Molecular and Peking Union Medical College
Type: | Journal: Scientific reports | Year: 2016

Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCMs diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQs cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the multi-component, multi-target and multi-pathway combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCMs molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.

Loading Beijing Genestone Technology Ltd. collaborators
Loading Beijing Genestone Technology Ltd. collaborators