Entity

Time filter

Source Type


Wu J.,Beijing Normal University | Xu Z.,Capital Medical University | He D.,Beijing Normal University | Lu G.,Beijing DnaLead Science and Technology Co.
Biochemical and Biophysical Research Communications | Year: 2014

The large nuclear mitotic apparatus (NuMA) has been investigated for over 30 years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two "hotspot" exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA's various functions. © 2014 Elsevier Inc. All rights reserved. Source


Zhang Y.,Changchun University | Lu G.,Beijing DnaLead Science and Technology Co. | Hu Q.,CAS Beijing Institute of Genomics | Hu Q.,University of Chinese Academy of Sciences | And 4 more authors.
Biochemical and Biophysical Research Communications | Year: 2014

Inheritable colorectal cancers (CRC) accounted for about 20% of the CRC cases, such as hereditary nonpolyposis colorectal cancer (HNPCC), Gardner syndrome and familial adenomatous polyposis (FAP). A four-generation Han Chinese family was found affected with polyposis in colons. Inferred from the pedigree structure, the disease in this family showed an autosomal dominant inheritance model. To locate the causal mutations in this family, genomic DNAs were extracted and the next generation sequencing for 5 genes relating to colon cancer performed by Ion Torrent Personal Genome Machine with a 314 chip. The reads were aligned with human reference genome hg19 to call variants in the 5 genes. After analysis, 14 variants were detected in the sequenced sample and 13 been collected in dbSNP database and assigned with a rs identification number. In these variants, 9 were synonymous, 4 missense and 1 non-sense. In them, 2 rare variants (c.694C>T in APC and c.1690A>G in MSH2) might be the putative causal mutations for familial adenomatous polyposis (FAP) since the rarity of the mutated allele in normal controls. c.694C>T was detected in only affected members and generated a premature stop codon in APC. It should be a de novo germline mutation making APC containing this stop codon as targets for nonsense-mediated mRNA decay (NMD). c.1690A>G in MSH2 was not only detected in affected members, but also in normal ones in the family. Functional prediction revealed that the amino acid affected by this variant had no effect on the function of MSH2. Here, we report a de novo germline mutation of APC as the causal variant in a Chinese family with inheritable colon cancer by the next generation sequencing. © 2014 Elsevier Inc. Source

Discover hidden collaborations