Time filter

Source Type

Cui X.,Capital Medical University | Xu Z.,Peking Union Medical College | Zhao Z.,Capital Medical University | Sui D.,Capital Medical University | And 7 more authors.
International Journal of Biological Sciences | Year: 2013

Glioblastoma multiforme (GBM) is the most common form of malignant glioma, characterized by genetic instability and unpredictable clinical behavior. GBM is marked by an extremely poor prognosis with median overall survival of 12~14 months. In this study, we detected the CD137L-expressing cells and IL-17-expressing cells in tumor tissues resected from patients with GBM. Expression of CD137L and IL-17 were assessed by immunohistochemistry, and the prognostic value of CD137L and IL-17 expression within the tumor tissues were assessed by Cox regression and Kaplan-Meier analysis. Immunohistochemical detection showed that positive cells of CD137L and IL-17 in glioblastoma tissue samples were 46.3% (19/ 41) and 73.2% (30/41) respectively. Expression of CD137L was not correlated with overall survival of GBM patients (P=0.594), while significantly longer survival rate was seen in patients with high expression of IL-17, compared to those with low expression of IL-17 (P=0.007). In addition, we also found that IL-17 expression was significantly correlated with Progression-free survival (PFS) (P=0.016) and death rate (P=0.01). Furthermore, multivariate Cox proportional hazard analyses revealed that IL-17 (P=0.018) and PFS (P=0.028) were independent factors affecting the overall survival probability. Kaplan-Meier analysis showed that PFS of high expression of IL-17 group were significantly longer (P=0.004) than low expression group with GBM. It is concluded that high levels of IL-17 expression in the tumor tissues may be a good prognostic marker for patients with GBM. © Ivyspring International Publisher.

Liu K.,Peking University | Liu X.,Chongqing Medical University | Peng Z.,Chongqing Medical University | Sun H.,Peking University | And 10 more authors.
Oncotarget | Year: 2015

There has been significant progress in the design of chimeric antigen receptors (CAR) for adoptive immunotherapy targeting tumor-associated antigens. However, the challenge of monitoring the therapy in real time has been continually ignored. To address this issue, we developed optical molecular imaging approaches to evaluate a recently reported novel CAR strategy for adoptive immunotherapy against glioma xenografts expressing EGFRvIII. We initially biotinylated a novel anti-EGFRvIII monoclonal antibody (biotin-4G1) to pre-target EGFRvIII+ gliomas and then redirect activated avidin-CAR expressing T cells against the pre-targeted biotin-4G1. By optical imaging study and bio-distribution analysis, we confirmed the specificity of pre-target and target and determined the optimal time for T cells adoptive transfer in vivo. The results showed this therapeutic strategy offered efficient therapy effect to EGFRvIII+ glioma-bearing mice and implied that optical imaging is a highly useful tool in aiding in the instruction of clinical CAR-T cells adoptive transfer in future.

Liu X.,Peking University | Liu K.,Peking University | Qin J.,Affiliated Bayi Brain Hospital | Hao L.,Beijing Cellonis Biotechnologies Co. | And 7 more authors.
International Journal of Cancer | Year: 2015

To study the mechanisms underlying the IL-6-promoted angiogenic microenvironment in EGFRvIII-positive glioblastoma, VEGF expression in EGFRvIII-positive/negative tumors was determined by optical molecular imaging. Next, the HUVEC tube formation assay, Western blot, qPCR, RNA silencing, chromatin immunoprecipitation, luciferase reporter and ELISA assays were performed to examine the role of IL-6 and C/EBPβ in the formation of the angiogenic microenvironment in EGFRvIII-positive tumors. Finally, in vitro and in vivo genistein treatment experiments were conducted to challenge the interaction between the IL-6 promoter and C/EBPβ. Optical imaging revealed greater VEGF expression in EGFRvIII-positive tumor-bearing mice, suggesting an angiogenic microenvironment. In vitro experiments demonstrated that C/EBPβ-mediated regulation of IL-6 was indispensable for maintenance of this angiogenic microenvironment. In contrast, genistein-mediated upregulation of CHOP impeded C/EBPβ interaction with the IL-6 promoter, thus disturbing the angiogenic microenvironment. This more malignant microenvironment in EGFRvIII glioblastoma is generated, at least in part, by greater VEGF, IL-6 and C/EBPβ expression. Interaction of C/EBPβ with the IL-6 promoter maintains this angiogenic microenvironment, while disturbance of this dynamically balanced interaction inhibits EGFRvIII tumor proliferation by reducing both VEGF and IL-6 expression. What's new? The purpose of this study was to explore the mechanisms of angiogenic microenvironment formation using EGFRvIII-positive glioblastoma as a model. EGFRvIII is regarded as a poor prognosis marker in gliomas because of its potential to confer enhanced tumorigenicity. Here, the authors confirm that EGFRvIII promotes a more malignant microenvironment in mice, as demonstrated by greater expression of the pro-angiogenic and tumorigenic factor VEGF. C/EBPβ-mediated regulation of IL-6 is indispensable for maintenance of this angiogenic microenvironment. In contrast, the drug genistein inhibits the development of tumor angiogenesis through a mechanism involving CHOP-mediated inhibition of C/EBPβ and the subsequent down-regulation of IL-6. © 2014 UICC.

Loading Beijing Cellonis Biotechnologies Co. collaborators
Loading Beijing Cellonis Biotechnologies Co. collaborators