Time filter

Source Type

St. Kitts, Trinidad and Tobago

Soto E.,Ross University School of Medicine | Lamon V.,Ross University School of Medicine | Griffin M.,Mississippi State University | Keirstead N.,Ross University School of Medicine | And 2 more authors.
Journal of Wildlife Diseases | Year: 2012

Klebsiella pneumoniae is a zoonotic, Gram-negative member of the family Enterobacteriaceae and is the causative agent of nosocomial septicemic, pneumonic, and urinary tract infections. Recently, pathogenic strains of K. pneumoniae sharing a hypermucoviscosity (HMV) phenotype have been attributed to multisystemic abscessation in both human and nonhuman primates. Although K. pneumoniae is a well-recognized zoonotic agent, there is a lack of general information including adequate diagnostic methods or treatments for nonhuman primates. In an effort to increase the body of knowledge of this enigmatic pathogen, K. pneumoniae isolates from African green monkeys (Chlorocebus aethiops sabaeus) on the island of St. Kitts, West Indies were genotypically and phenotypically characterized. Genetic fingerprints generated by PCRmediated genomic fingerprinting, phenotypic characterization, and antimicrobial susceptibility all identified a high degree of similarity between the HMV and non-HMV K. pneumoniae isolates. The results obtained from this work will help establish a baseline for the development of efficacious diagnostic methods and treatment strategies for both human and nonhuman primates.

Burke M.W.,Howard University | Ptito M.,University of Montreal | Ervin F.R.,Behavioural Science Foundation | Ervin F.R.,McGill University | And 2 more authors.
Developmental Psychobiology | Year: 2015

Prenatal exposure to beverage alcohol is a major cause of mild mental retardation and developmental delay. In nonendangered alcohol-preferring vervet monkeys, we modeled the most common nondysmorphic form of fetal alcohol syndrome disorder with voluntary drinking during the third trimester of pregnancy. Here, we report significant numerical reductions in the principal hippocampal neurons of fetal alcohol-exposed (FAE) offspring, as compared to age-matched, similarly housed conspecifics with isocaloric sucrose exposure. These deficits, particularly marked in CA1 and CA3, are present neonatally and persist through infancy (5 months) and juvenile (2 years) stages. Although the volumes of hippocampal subdivisions in FAE animals are not atypical at birth, by age 2, they are only 65-70% of those estimated in age-matched controls. These data suggest that moderate, naturalistic alcohol consumption during late pregnancy results in a stable loss of hippocampal neurons and a progressive reduction of hippocampal volume. © 2015 The Authors. Developmental Psychobiology Published by Wiley Periodicals, Inc.

Whitehouse C.A.,U.S. Army | Keirstead N.,University of Trinidad and Tobago | Taylor J.,U.S. Army | Reinhardt J.L.,U.S. Army | Beierschmitt A.,Behavioural Science Foundation
Journal of Wildlife Diseases | Year: 2010

Invasive, hypermucoid Klebsiella pneumoniae causes severe abscess formation in humans and in certain species of nonhuman primates. We conducted a survey of captive and wild-caught African green monkeys, or vervets (Chlorocebus aethiops sabaeus), on the Caribbean island of St. Kitts to assess their carriage rate of Klebsiella spp. Forty percent of rectal swabs from captive monkeys were positive for K pneumoniae, and 20% of wild-caught animals were positive. Two wild-caught monkeys (4%) were positive for K. oxytoca, and one monkey (2%) was found to be infected with a hypermucoid rmpA-positive K pneumoniae strain. Genotyping of this strain showed that it had an indistinguishable random amplified polymorphic DNA fingerprint to a strain that caused fatal abscessation in several African green monkeys in a research colony in the USA in 2005. This is the first report of hypermucoid K pneumoniae isolation from a wild population of nonhuman primates and represents a potential health risk to these animals, as well as to the humans who come in contact with them. © Wildlife Disease Association 2010.

Discover hidden collaborations