Entity

Time filter

Source Type

Edinburgh, United Kingdom

Rooke J.A.,Beef and Sheep Research Center | Arnott G.,Animal and Veterinary science Research Group | Arnott G.,Queens University of Belfast | Dwyer C.M.,Animal and Veterinary science Research Group | Rutherford K.M.D.,Animal and Veterinary science Research Group
Journal of Agricultural Science | Year: 2015

The prenatal period is of critical importance in defining how individuals respond to their environment throughout life. Stress experienced by pregnant females has been shown to have detrimental effects on offspring behaviour, health and productivity. The sheep has been used extensively as a model species to inform human studies. However, in the farmed environment, the consequences for the lamb of the imposition of prenatal stresses upon the ewe have received much less attention. The stressors that pregnant ewes are most frequently exposed to include sub-optimal nutrition and those related to housing, husbandry and environment which may be either acute or chronic. A systematic review of the literature was adopted to identify material which had production-relevant maternal stressors and lamb outcomes. The current review focussed upon the lamb up to weaning around the age of 100 days and the results clearly demonstrate that stressors imposed upon the ewe have implications for offspring welfare and performance. Maternal under-nutrition (UN) in the last third of pregnancy consistently impaired lamb birth-weight and subsequent vigour and performance, while earlier UN had a variable effect on performance. Feeding the ewe above requirements did not have positive effects on lamb performance and welfare. Social and husbandry stressors such as transport, shearing, mixing and physiological treatments designed to mimic acute stress which would be considered disadvantageous for the ewe had positive or neutral effects for the lamb, highlighting a potential conflict between the welfare of the ewe and her lamb. This review also identified considerable gaps in knowledge, particularly in respect of the impact of disease upon the ewe during pregnancy and interactions between different stressors and the responses of ewe and lamb. © Cambridge University Press 2014. Source


Duthie C.-A.,Beef and Sheep Research Center | Rooke J.A.,Beef and Sheep Research Center | Troy S.,Beef and Sheep Research Center | Hyslop J.J.,SAC Consulting Ltd. | And 3 more authors.
Animal | Year: 2015

Adding nitrate to the diet or increasing the concentration of dietary lipid are effective strategies for reducing enteric methane emissions. This study investigated their effect on health and performance of finishing beef cattle. The experiment was a two×two×three factorial design comprising two breeds (CHX, crossbred Charolais; LU, Luing); two basal diets consisting of (g/kg dry matter (DM), forage to concentrate ratios) 520 : 480 (Mixed) or 84 : 916 (Concentrate); and three treatments: (i) control with rapeseed meal as the main protein source replaced with either (ii) calcium nitrate (18 g nitrate/kg diet DM) or (iii) rapeseed cake (RSC, increasing acid hydrolysed ether extract from 25 to 48 g/kg diet DM). Steers (n=84) were allocated to each of the six basal diet×treatments in equal numbers of each breed with feed offered ad libitum. Blood methaemoglobin (MetHb) concentrations (marker for nitrate poisoning) were monitored throughout the study in steers receiving nitrate. After dietary adaptation over 28 days, individual animal intake, performance and feed efficiency were recorded for a test period of 56 days. Blood MetHb concentrations were low and similar up to 14 g nitrate/kg diet DM but increased when nitrate increased to 18 g nitrate/kg diet DM (P<0.001). An interaction between basal diet and day (P<0.001) indicated that MetHb% was consistently greater in Concentrate – than Mixed-fed steers at 18 g nitrate/kg diet DM. Maximum individual MetHb% was 15.4% (of total Hb), which is lower than considered clinically significant (30%). MetHb concentrations for individual steers remained consistent across time. Concentrate-fed steers were more efficient (lower residual feed intake (RFI) values) than Mixed-fed steers (P<0.01), with lower dry matter intake (DMI) (kg/day) (P<0.001) and similar average daily gain (ADG). CHX steers were more efficient (lower RFI; P<0.01) than LU steers with greater ADG (P<0.01), lower DMI (/kg BW; P<0.01) and lower fat depth (P<0.001). ADG, BW or DMI did not differ across dietary treatments (P>0.05). Neither basal diet nor treatment affected carcass quality (P>0.05), but CHX steers achieved a greater killing out proportion (P<0.001) than LU steers. Thus, adding nitrate to the diet or increasing the level of dietary lipid through the use of cold-pressed RSC, did not adversely affect health or performance of finishing beef steers when used within the diets studied. © The Animal Consortium 2015 Source


Duthie C.-A.,Beef and Sheep Research Center | Rooke J.A.,Beef and Sheep Research Center | Hyslop J.J.,SAC Consulting Ltd. | Waterhouse A.,Beef and Sheep Research Center
Animal | Year: 2015

Increasing the concentration of dietary lipid is a promising strategy for reducing methane (CH4) emissions from ruminants. This study investigated the effect of replacing grass silage with brewers' grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. The experiment was a two×two factorial design comprising two breeds (LIMx, crossbred Limousin; and LUI, purebred Luing) and two diets consisting of (g/kg diet dry matter (DM)) barley straw (687) and grass silage (301, GS), or barley straw (763) and brewers' grains (226, BG), which were offered ad libitum. Replacing GS with BG increased the acid-hydrolysed ether extract concentration from 21 to 37 g/kg diet DM. Cows (n=48) were group-housed in equal numbers of each breed across two pens and each diet was allocated to one pen. Before measurements of CH4, individual dry matter intake (DMI), weekly BW and weekly body condition score were measured for a minimum of 3 weeks, following a 4-week period to acclimatise to the diets. CH4 emissions were subsequently measured on one occasion from each cow using individual respiration chambers. Due to occasional equipment failures, CH4 measurements were run over 9 weeks giving 10 observations for each breed×treatment combination (total n=40). There were no differences between diets for daily DMI measured in the chambers (9.92 v. 9.86 kg/day for BG and GS, respectively; P>0.05). Cows offered the BG diet produced less daily CH4 than GS-fed cows (131 v. 156 g/day: P<0.01). When expressed either as g/kg DMI or kJ/MJ gross energy intake (GEI), BG-fed cows produced less CH4 than GS-fed cows (13.5 v. 16.4 g/kg DMI, P<0.05; 39.2 v. 48.6 kJ/MJ GEI, P<0.01). Breed did not affect daily DMI or CH4 expressed as g/day, g/kg DMI or kJ/MJ GEI (P>0.05). However, when expressed as a proportion of metabolic BW (BW0.75), LUI cows had greater DMI than LIMx cows (84.5 v. 75.7 g DMI/kg BW0.75, P<0.05) and produced more CH4 per kg BW0.75 than LIMx cows (1.30 v. 1.05 g CH4/kg BW0.75; P<0.01). Molar proportions of acetate were higher (P<0.001) and propionate and butyrate lower (P<0.01) in rumen fluid samples from BG-fed compared with GS-fed cows. This study demonstrated that replacing GS with BG in barley straw-based diets can effectively reduce CH4 emissions from beef cows, with no suppression of DMI. © 2015 The Animal Consortium. Source

Discover hidden collaborations