Entity

Time filter

Source Type

Doberlug-Kirchhain, Germany

Buchler R.,Bee Institute | Andonov S.,Faculty for Agricultural Science and Food | Bienefeld K.,Landerinstitut fur Bienenkunde Hohen Neuendorf e.V. | Costa C.,Italian Agricultural Research Council | And 6 more authors.
Journal of Apicultural Research | Year: 2013

Here we cover a wide range of methods currently in use and recommended in modern queen rearing, selection and breeding. The recommendations are meant to equally serve as standards for both scientific and practical beekeeping purposes. The basic conditions and different management techniques for queen rearing are described, including recommendations for suitable technical equipment. As the success of breeding programmes strongly depends on the selective mating of queens, a subchapter is dedicated to the management and quality control of mating stations. Recommendations for the handling and quality control of queens complete the queen rearing section. The improvement of colony traits usually depends on a comparative testing of colonies. Standardized recommendations for the organization of performance tests and the measurement of the most common selection characters are presented. Statistical methods and data preconditions for the estimation of breeding values which integrate pedigree and performance data from as many colonies as possible are described as the most efficient selection method for large populations. Alternative breeding programmes for small populations or certain scientific questions are briefly mentioned, including also an overview of the young and fast developing field of molecular selection tools. Because the subject of queen rearing and selection is too large to be covered within this paper, plenty of references are given to facilitate comprehensive studies. Copyright © IBRA 2013. Source


Meixner M.D.,Bee Institute | Pinto M.A.,Polytechnic Institute of Braganca | Bouga M.,Agricultural University of Athens | Kryger P.,University of Aarhus | And 2 more authors.
Journal of Apicultural Research | Year: 2013

The natural diversity of honey bees in Europe is eroding fast. A multitude of reasons lead to a loss of both genetic diversity and specific adaptations to local conditions. To preserve locally adapted bees through breeding efforts and to maintain regional strains in conservation areas, these valuable populations need to be identified. In this paper, we give an overview of methods that are currently available and used for recognition of honey bee subspecies and ecotypes, or that can be utilised to verify the genetic origin of colonies for breeding purposes. Beyond summarising details of morphometric, allozyme and DNA methods currently in use, we report recommendations with regard to strategies for sampling, and suggest methods for statistical data analysis. In particular, we emphasise the importance of reference data and consistency of methods between laboratories to yield comparable results. © IBRA 2013. Source


Hatjina F.,Hellenic Institute of Apiculture | Costa C.,Italian Agricultural Research Council | Buchler R.,Bee Institute | Uzunov A.,Faculty for Agricultural Science and Food | And 21 more authors.
Journal of Apicultural Research | Year: 2014

Adaptation of honey bees to their environment is expressed by the annual development pattern of the colony, the balance with food sources and the host - parasite balance, all of which interact among each other with changes in the environment. In the present study, we analyse the development patterns over a period of two years in colonies belonging to 16 different genotypes and placed in areas grouped within six environmental clusters across Europe. The colonies were maintained with no chemical treatment against varroa mites. The aim of the study was to investigate the presence of genotype - environment interactions and their effects on colony development, which we use in this study as a measure of their vitality. We found that colonies placed in Southern Europe tend to have lower adult bee populations compared to colonies placed in colder conditions, while the brood population tends to be smaller in the North, thus reflecting the shorter longevity of bees in warmer climates and the shorter brood rearing period in the North. We found that both genotype and environment significantly affect colony development, and that specific adaptations exist, especially in terms of adult bee population and overwintering ability. © IBRA 2014 . Source


Costa C.,Italian Agricultural Research Council | Panasiuk B.,Research Institute of Horticulture | Meixner M.,Bee Institute | Kryger P.,University of Aarhus | And 14 more authors.
Journal of Apicultural Research | Year: 2014

Honey bee colonies exhibit a wide range of variation in their behaviour, depending on their genetic origin and environmental factors. The COLOSS Genotype-Environment Interactions Experiment gave us the opportunity to investigate the phenotypic expression of the swarming, defensive and hygienic behaviour of 16 genotypes from five different honey bee subspecies in various environmental conditions. In 2010 and 2011, a total of 621 colonies were monitored and tested according to a standard protocol for estimation of expression of these three behavioural traits. The factors: year, genotype, location, origin (local vs. non-local) and season (only for hygienic behaviour) were considered in statistical analyses to estimate their effect on expression of these behaviours. The general outcome of our study is that genotype and location have a significant effect on the analysed traits. For all characters, the variability among locations was higher than the variability among genotypes. We also detected significant variability between the genotypes from different subspecies, generally confirming their known characteristics, although great variability within subspecies was noticed. Defensive and swarming behaviour were each positively correlated across the two years, confirming genetic control of these characters. Defensive behaviour was lower in colonies of local origin, and was negatively correlated with hygienic behaviour. Hygienic behaviour was strongly influenced by the season in which the test was performed. The results from our study demonstrate that there is great behavioural variation among different subspecies and strains. Sustainable protection of local genotypes can be promoted by combining conservation efforts with selection and breeding to improve the appreciation by beekeepers of native stock. © IBRA 2014. Source


Costa C.,Italian Agricultural Research Council | Buchler R.,Bee Institute | Berg S.,Bayerische Landesanstalt fur Weinbau und Gartenbau | Bienkowska M.,Research Institute of Horticulture | And 23 more authors.
Journal of Apicultural Science | Year: 2012

An international experiment to estimate the importance of genotype-environment interactions on vitality and performance of honey bees and on colony losses was run between July 2009 and March 2012. Altogether 621 bee colonies, involving 16 different genetic origins of European honey bees, were tested in 21 locations spread in 11 countries. The genetic strains belonged to the subspecies A. m. carnica, A. m. ligustica, A. m. macedonica, A. m. mellifera, A. m. siciliana. At each location, the local strain of bees was tested together with at least two "foreign" origins, with a minimum starting number of 10 colonies per origin. The common test protocol for all the colonies took into account colony survival, bee population in spring, summer and autumn, honey production, pollen collection, swarming, gentleness, hygienic behaviour, Varroa destructor infestation, Nosema spp. infection and viruses. Data collection was performed according to uniform methods. No chemical treatments against Varroa or other diseases were applied during the experiment. This article describes the details of the experiment set-up and the work protocol. Source

Discover hidden collaborations