Time filter

Source Type

Nairobi, Kenya

Macharia I.,University of New England of Australia | Backhouse D.,University of New England of Australia | Skilton R.,BecA ILRI Hub | Ateka E.,Jomo Kenyatta University of Agriculture and Technology | And 4 more authors.
Journal of Economic Entomology | Year: 2015

Thrips have been recognized as primary vectors of tomato spotted wilt virus (TSWV) with Frankliniella occidentalis (Pergande) reported as the most important and efficient vector, while other species such as Thrips tabaci Lindeman also include populations that can vector the virus. A study was undertaken to establish the diversity of thrips and presence of vectors for TSWV in four major tomato production areas in Kenya. The cytochrome oxidase 1 (CO1) gene was used to generate sequences from thrips samples collected from tomatoes and weeds, and phylogenetic analysis done to establish the variation within potential vector populations. Ceratothripoides brunneus Bagnall was the predominant species of thrips in all areas. F. occidentalis and T. tabaci were abundant in Nakuru, Kirinyaga, and Loitokitok but not detected at Bungoma. Other vectors of tospoviruses identified in low numbers were Frankliniella schultzei (Trybom) and Scirtothrips dorsalis Hood. Variation was observed in T. tabaci, F. occidentalis, and F. schultzei. Kenyan specimens of T. tabaci from tomato belonged to the arrhenotokous group, while those of F. occidentalis clustered with the Western flower thrips G group. The detection of RNA of TSWV in both of these species of thrips supported the role they play as vectors. The study has demonstrated the high diversity of thrips species in tomato production and the occurrence of important vectors of TSWV and other tospoviruses. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. Source

Elisa M.,BecA ILRI Hub | Elisa M.,Sokoine University of Agriculture | Hasan S.D.,BecA ILRI Hub | Hasan S.D.,Veterinary Research Institute VRI | And 4 more authors.
Parasitology | Year: 2015

This study investigated the genetic and antigenic diversity of Theileria parva in cattle from the Eastern and Southern zones of Tanzania. Thirty-nine (62%) positive samples were genotyped using 14 mini- and microsatellite markers with coverage of all four T. parva chromosomes. Wright's F index (F ST = 0 × 094) indicated a high level of panmixis. Linkage equilibrium was observed in the two zones studied, suggesting existence of a panmyctic population. In addition, sequence analysis of CD8+ T-cell target antigen genes Tp1 revealed a single protein sequence in all samples analysed, which is also present in the T. parva Muguga strain, which is a component of the FAO1 vaccine. All Tp2 epitope sequences were identical to those in the T. parva Muguga strain, except for one variant of a Tp2 epitope, which is found in T. parva Kiambu 5 strain, also a component the FAO1 vaccine. Neighbour joining tree of the nucleotide sequences of Tp2 showed clustering according to geographical origin. Our results show low genetic and antigenic diversity of T. parva within the populations analysed. This has very important implications for the development of sustainable control measures for T. parva in Eastern and Southern zones of Tanzania, where East Coast fever is endemic. © Cambridge University Press 2014. Source

Discover hidden collaborations