Time filter

Source Type

Invergowrie, Australia

Gaden C.A.,Beaumont | Cheetham B.F.,University of New England of Australia | Hall E.,Margaret Street | Green G.,Livestock Health and Pest Authority | Katz M.E.,University of New England of Australia
Animal Production Science | Year: 2013

The Cicerone Project was formed in 1998 to address problems faced by wool producers. In the New England area, the issue of suspected false positive diagnoses of virulent footrot, which can be a significant cause of economic loss to individual producers, was investigated. In New South Wales, footrot diagnosis is primarily a field diagnosis supported by the gelatin gel laboratory test. The principal causative agent of footrot is Dichelobacter nodosus. If the gelatin gel test finds strains of D. nodosus to be thermostable (gel stable), a finding of virulent footrot is likely and quarantine of the affected property follows. However, livestock producers and inspectors reported that there were a considerable number of cases where laboratory tests found strains to be stable but these strains did not cause virulent footrot in the field. Preliminary results using DNA markers associated with virulent footrot showed that one of these markers, intA, was absent in gel stable, field benign strains but present in all strains tested which caused field virulent footrot. A trial conducted at Uralla, New South Wales, demonstrated conclusively that there were strains of D. nodosus which were stable in the gelatin gel test but did not cause virulent footrot in the field. All of these strains were negative in the intA DNA test. These results were confirmed in a second field trial at Molong, New South Wales. These trials were instrumental in establishing that the gelatin gel test at times gave results inconsistent with the clinical expression of footrot, potentially leading to a false positive diagnosis of virulent footrot. Subsequent research led to confirmation of the intA test, which is now available as an additional tool for footrot diagnosis.

Coventry T.,Bailey Park | Sutherland H.,Deeargee | Waters M.,Riverton | Dutton P.,Wyanga | And 10 more authors.
Animal Production Science | Year: 2013

The Cicerone Project began as a producer-led partnership that sought, over a period of 8 years, to enhance the profitability and sustainability of livestock enterprises by improving the connection between those producers, research and extension. Following a detailed survey, the research and extension needs of livestock producers were identified and several applied investigations were conducted to meet those needs and delivered through a range of extension activities. This final paper of the Cicerone Special Issue reflects on the entire Project from a wide array of perspectives, including livestock producers, researchers, extension specialists and staff employed by the Project, all of whom are authors of this paper. A notable early successful outcome of the Project was the improved precision of footrot diagnosis, which has been of value to the entire sheep industry, and that flowed from a field investigation of benign and virulent footrot combined with detailed genetic investigations, which led to an improved testing regime. This paper also reflects on the findings of an unreplicated agricultural ecosystem research trial, which measured the impact of pasture renovation, increased soil fertility and grazing management on the profitability and sustainability of three different 53-ha farmlets. Valuable findings from this whole-farmlet trial included the need for a high quality feed supply for increasing stocking rate and animal liveweights; the ability and utility of satellite imagery to detect changes in pasture growth, composition and recent grazing pressure; the value of short grazing and long rest periods for controlling Barber's pole worms of sheep; the impact of increased stocking rates on whole-farm profitability and risk; methods of optimising decisions relating to pasture renovation, fertiliser applications and grazing management; and an integrated analysis of all key measured components of the farmlet management systems. Collectively, these findings were powerful as they were demonstrated at a scale credible to livestock producers using the 'compare - measure - learn - adopt' approach, which was the key philosophy adopted by the Cicerone Project. By comparing and measuring different whole-farm systems, and by ensuring that producers had ownership of the trial process, the Project successfully delivered objective findings that producers trusted and which increased our understanding of important drivers of complex grazing enterprises under variable climatic conditions. Some of these drivers included: the influence of soil phosphorus on botanical composition and subsequent livestock production, the role of pasture renovation and soil fertility on herbage supply, herbage quality and stocking rate, and the improved gastrointestinal nematode control delivered by intensive rotational grazing. The beneficiaries of the Project included the 180 farmer members who participated in some 61 field days and workshops; the research and extension collaborators including four postgraduates who completed their research investigations in conjunction with the Project; and some 500 undergraduate and 300 technical students who benefited from coming to understand the applied field comparisons of the three whole-farmlet systems. Having livestock producers play a significant leadership role led to valuable outcomes achieved with research collaborators; this should encourage the development of other learning partnerships which aim to explore complex farming system issues.

Scott J.M.,University of New England of Australia | Gaden C.A.,Beaumont | Edwards C.,NSW DPI | Paull D.R.,CSIRO | And 5 more authors.
Animal Production Science | Year: 2013

The Cicerone Project was a collaborative effort by livestock producers, researchers and extension specialists, which aimed to explore the profitability and sustainability of grazing enterprises on the Northern Tablelands of New South Wales, Australia. A major part of the Project was the creation of a moderate scale, unreplicated farmlet experiment. The process of selecting the farmlet treatments and the design of the experiment involved considerable negotiation over an extended period in order to achieve 'ownership' by all those involved. The farmlets were designed to compare a typical farmlet (B) as the control with a second farmlet (A), which received higher levels of pasture renovation and soil fertility, and a third (C), which employed intensive rotational grazing management with short graze and long rest periods. Management guidelines were developed for all soil, pasture, livestock and grazing management decisions on the three farmlets. Whole-farmlet data are presented for the pastures sown, fertiliser applied, supplement fed, the stocking rates attained and the pattern of graze and rest periods over the experimental period from July 2000 to December 2006. Over the first 4 years of the trial, pastures were renovated on 71% of farmlet A while 8% of each of farmlets B and C were renovated. The rates of fertiliser applied to the three farmlets varied according to soil test values and the different target values for soil phosphorus and sulfur. In the first year of the trial (2000-01), the annual average stocking rates on farmlets A, B and C were 9.5, 7.9 and 9.1 dry sheep eqivalents/ha, respectively, whereas by the fifth year (2005), the stocking rates were 11.2, 7.8 and 7.4 dry sheep equivalents/ha, respectively. This paper provides details of the general methods used in the farmlet trial, of relevance to a series of related papers which explore all aspects of the farmlet experiment and its findings. It also reports on the selection and definition of the farmlet treatments and describes how the guidelines evolved over the duration of the trial in response to the practical realities of conducting this complex, agroecosystem experiment.

Cottle D.,University of New England of Australia | Gaden C.A.,Beaumont | Hoad J.,University of New England of Australia | Lance D.,Cressbrook | And 2 more authors.
Animal Production Science | Year: 2013

A farmlet experiment was conducted between July 2000 and December 2006 as part of the Cicerone Project, which sought to enhance the profitability and sustainability of grazing enterprises on the Northern Tablelands of New South Wales, Australia. A self-replacing Merino enterprise was grazed as the dominant livestock enterprise, together with ∼20% of the carrying capacity as cattle, on each of three farmlet treatments: higher levels of soil fertility and pasture renovation with flexible rotational grazing over eight paddocks (farmlet A), moderate soil fertility and pasture renovation with flexible rotational grazing over eight paddocks (farmlet B) and moderate soil fertility and pasture renovation with intensive rotational grazing over 37 paddocks (farmlet C). Prior to commencement of the trial, the three 53-ha farmlets were allocated equivalent areas of land based on soil type, slope and recent fertiliser history. This paper describes the effects of the three pasture and grazing management strategies on the production, quality and value of the wool produced per head, per ha and per farmlet. Up until 2001 there were no differences in wool production between farmlets. Thereafter, significant differences between farmlets emerged in greasy fleece weight per head and price received per kg of fleece wool. For example, the clean fleece value averaged over the 2003-05 shearings for all hoggets, ewes and wethers was 1531, 1584 and 1713 cents/kg for farmlets A, B and C, respectively. There were small but significant differences, which varied between sheep class and year, between the farmlets in average fibre diameter and staple length but less so with staple strength. In general, while the differences between farmlets in staple strength varied over time, farmlets A and B tended to have wool with longer staple length and broader fibre diameter than farmlet C and this affected wool value per kg. Differences in wool income per ha between farmlets grew in later years as the farmlet treatments took effect. In spite of farmlet A having a slightly lower wool value per kg, after taking into account its greater fleece weight per head and its higher stocking rate, the total wool income per ha was higher than on either farmlets B or C. The average gross wool income per ha from 2003 to 2005 was 303, 215 and 180 for farmlets A, B and C, respectively. The highest amount of greasy wool produced was in 2004 when 38.2, 26.5 and 21.5 kg/ha was harvested from farmlets A, B and C, respectively. The fibre diameter profiles of 2-year-old ewes showed similar profiles for farmlets A and B but a significantly finer fibre diameter profile for farmlet C ewes due to intensive rotational grazing. However, sheep on all three farmlets produced wool with high staple strength. Multivariate analyses revealed that greasy fleece weight, staple length and staple strength were significantly positively correlated with the proportion of the farm grazed at any one time, and with soil phosphorus, legume herbage and green digestible herbage thus highlighting the significant influence of pasture and soil inputs and of grazing management on wool production and quality.

Radford J.T.,Mott MacDonald Ltd. | Malinga S.,Water for People | Drummond G.,Sanitation Solutions Group | Atayo H.,Water for People | And 2 more authors.
Journal of Water Sanitation and Hygiene for Development | Year: 2015

A simple and low-cost test to measure the physical strength of faecal sludge simulants is presented and used in the development of improved desludging pumps in Kampala, Uganda. The technical performance of two variants of the Gulper manual pump have for the first time been quantitatively assessed under controlled conditions. The time taken to prime and the average flow rate in the following 30 seconds are reported for both pumps on two different strengths of faecal sludge, demonstrating a distinct improvement in the redesigned Gulper II. This pump is now undergoing field trials across East Africa with a view to it being marketed and sold to pit-emptying entrepreneurs by Sanitation Solutions Group. © IWA Publishing 2015.

Discover hidden collaborations