Winter Park, FL, United States

BEAM Engineering for Advanced Measurements

www.beamco.com
Winter Park, FL, United States
SEARCH FILTERS
Time filter
Source Type

Patent
US Government and BEAM Engineering for Advanced Measurements | Date: 2017-01-30

Pointing and positioning system of light beams and images including a plurality of cycloidal diffractive waveplates, each waveplate capable of deviating a generally broadband light beam over a predetermined angle. The lateral translation and deviation angles of the light beams are controlled by controlling the relative distance, rotational position, and the diffraction efficiency of at least one in the plurality of waveplates.


Patent
BEAM Engineering for Advanced Measurements | Date: 2014-07-04

Method for jamming or affecting the quality of photo and video recording, the method comprising illuminating the area, collecting light reflected or scattered from optical components such as camera lenses, amplifying them, and reversing the amplified beams back to the camera with phase conjugating mirror. The method may further comprise image acquisition and processing for identifying unwanted optical components and sensors, and electronically pointing and focusing a laser beam on said components and sensors.


Patent
BEAM Engineering for Advanced Measurements | Date: 2017-02-22

Lenses, devices, apparatus, systems, methods of manufacturing and fabricating an ophthalmic lens device for correction of human vision. The ophthalmic lens device includes at least one diffractive waveplate coating with an optical axis orientation pattern designed to correct the vision of individual patients. The ophthalmic lens device including diffractive waveplate coating may also provide a portion of the required vision correction by means of refraction of light by curved surfaces of a dielectric material.


Patent
BEAM Engineering for Advanced Measurements | Date: 2016-10-27

Diffractive waveplate lenses, mirrors, devices, systems and methods for performing imaging over a broad spectral band in imaging systems, such as but not limited to astronomical imaging, surveillance imaging, and in communication systems, such as laser communication systems. Corrector mirrors are used with a flat diffractive wave diffractive waveplate lens so that chromatic aberrations of the diffractive waveplate lens are reduced with the imaging system.


Patent
BEAM Engineering for Advanced Measurements | Date: 2016-06-22

Mirrors, lenses, devices, apparatus, systems and methods for correcting temporal dispersion of laser pulses or other pulses of electromagnetic radiation in diffractive telescopes used in applications, such as but not limited to optical telescopes, transmitters, receivers, and transceivers for laser communication and imaging. Diffractive lenses and mirrors allow for producing large area telescopes and reducing or eliminating temporal dispersion of laser pulses and other pulses of electromagnetic radiation recorded by such telescopes. This can be achieved by utilizing high efficiency thin film diffractive optical films, particularly, diffractive waveplates, and having a secondary diffractive mirror of a shape selected to assure that the propagation time from the flat primary collecting lens or mirror is independent of the position on the flat primary collecting lens or mirror at which the radiation impinges.


Patent
BEAM Engineering for Advanced Measurements | Date: 2014-02-28

Method for fabrication of vector vortex waveplates of improved quality due to reduced singularity size and widened spectral band, the method comprising creating a boundary condition for vortex orientation pattern of a liquid crystal polymer on a substrate using materials with reversible photoalignment, equalizing exposure energy over the area of the waveplate by redistributing the energy of radiation used for photoalignment from the center of the beam to its peripheries, and using vector vortex waveplate as a linear-to-axial polarization converter. Fabrication of spectrally broadband vector vortex waveplates further comprises two or more liquid crystal polymer layers with opposite sign of twist.


Grant
Agency: National Aeronautics and Space Administration | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 124.53K | Year: 2014

In future ground-based receivers for deep-space optical communications with spacecraft, aperture diameters of the order of 10 meters are required even with the most sensitive available detectors. Directly applying the technology of 10 meter class ground-based telescopes is cost prohibitive. Also, conventional astronomical telescopes are not compatible with operation within 5 degees of the sun, but such near-sun operation is required with the Ground-based Telescope Assembly to provide consistent and reliable wideband communications with interplanetary spacecraft. BEAM Co. proposes to develop a telescope based on diffractive optics that is expected to be far less expensive to manufacture than a telescope based on conventional reflective optics. Our approach takes advantage of the well-defined wavelength of the optical communications beam, thus allowing a high-efficiency design that is expected to be much lighter than a conventional design, thereby reducing the cost of the system that will be used to point the telescope. At the end of Phase I, we will have fabricated and tested subscale diffractive optical elements and performed tests to validate the technology's scalability to large apertures and its capability to support the


Grant
Agency: National Aeronautics and Space Administration | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 1.04M | Year: 2012

Using small aperture telescopes for detecting exoplanets could have a significant impact on astronomy and other imaging and space communication systems. In this new generation of smaller, lighter and more affordable coronagraph systems, the starlight is rejected with the aid of phase-based transparent masks capable of transmitting planetary light at small angular separation from the star. These so-called vector vortex waveplates (VVW) are complex optical components wherein the optical axis orientation is azimuthally modulated in space at a high spatial frequency. In the Phase 1 of the project, we showed the feasibility of fabricating VVWs that would meet requirements for astronomy applications due to small singularity size, high topological charge, high contrast, and broadband functionality. The breakthrough polarization conversion and beam shaping technology of printing VVWs developed in the Phase 1 will undergo further fundamental improvements in the Phase 2 of the project along with further optimization of photoalignment materials and liquid crystal polymers to fabricate and deliver VVWs characterized by: subwavelength singularity sizes; spectrally broadband/achromatic functionality, particularly, for infrared wavelengths; stability to radiation and large temperature variations; and functionality at cryogenic temperatures. This will accomplish the project's general objective – development and delivery of VVWs adequate for practical use.


Patent
BEAM Engineering for Advanced Measurements | Date: 2014-03-02

Cycloidal boundary conditions for aligning liquid crystalline materials are obtained by mechanical rubbing of a polymer coating. The rubbing is performed by a rubbing head rotating around an axis perpendicular to the rubbing plane while the alignment polymer film is being translated across the rubbing film such as only a linear portion of the alignment film touches the rubbing film at any given time.


Patent
BEAM Engineering for Advanced Measurements | Date: 2015-04-16

Lenses, devices, apparatus, systems, methods of manufacturing and fabricating an ophthalmic lens device for correction of human vision. The ophthalmic lens device includes at least one diffractive waveplate coating with an optical axis orientation pattern designed to correct the vision of individual patients. The ophthalmic lens device including diffractive waveplate coating may also provide a portion of the required vision correction by means of refraction of light by curved surfaces of a dielectric material.

Loading BEAM Engineering for Advanced Measurements collaborators
Loading BEAM Engineering for Advanced Measurements collaborators