BBS Nanotechnology Ltd.

Debrecen, Hungary

BBS Nanotechnology Ltd.

Debrecen, Hungary

Time filter

Source Type

Polyak A.,National Fjc Research Institute For Radiobiology And Radiohygiene Nrirr | Hajdu I.,BBS Nanotechnology Ltd. | Bodnar M.,BBS Nanotechnology Ltd. | Dabasi G.,Semmelweis University | And 3 more authors.
International Journal of Pharmaceutics | Year: 2014

A new biocompatible, biodegradable, self-assembled chitosan-based nanoparticulate product was successfully synthesized and radiolabeled with technetium-99m, and studied as a potential new SPECT or SPECT/CT imaging agent for diagnosis of folate receptor overexpressing tumors. In the present study we examined the conditions of a preclinical application of this labeled nanosystem in early diagnosis of spontaneously diseased veterinary patient using a human SPECT/CT device. The results confirmed that the nanoparticles accumulated in tumor cells overexpressing folate receptors, contrast agent revealed higher uptake in the tumor for a long time. Preclinical trials verified that the new nanoparticles are able to detect folate-receptor-overexpressing tumors in spontaneously diseased animal models with enhanced contrast. © 2014 Elsevier B.V. All rights reserved.


Hajdu I.,BBS Nanotechnology Ltd. | Bodnar M.,BBS Nanotechnology Ltd. | Csikos Z.,BBS Nanotechnology Ltd. | Wei S.,South China University of Technology | And 6 more authors.
Journal of Membrane Science | Year: 2012

The removal of toxic lead ions from aqueous solution by a combined nano-membrane separation technique was investigated. Biodegradable poly-gamma-glutamic acid (γ-PGA), a linear biopolymer, and its cross-linked nanoparticles were used to capture the metal ions by forming nanosized particles. The polymer-metal ion particles, with sizes in the range of 80-350. nm, were then removed by membrane separation. Two ultrafiltration techniques were studied with the aim of developing a nanoparticle-enhanced separation process for the efficient removal of lead ions from aqueous solution. The influence of parameters such as the feed lead ion and γ-PGA concentrations and their proportions, the γ-PGA cross-linking ratio and the pH of the solution on the lead-removal efficiency and permeate flux was studied. It was found that γ-PGA could bind and remove more than 99.8% of the lead ions from water through a convenient, low-pressure ultrafiltration technique, resulting in a permeate that satisfied the standard for drinking water recommended by the WHO. © 2012 Elsevier B.V.


Patent
BBS Nanotechnology Ltd. | Date: 2014-12-19

Method and apparatus for characterizing drug-modified polymers, macromolecules, proteins, antigens, antibodies or nanoparticles and quantitative determination of their impurity profile by two-dimensional liquid chromatography analysis. The first dimension is preferably size exclusion chromatography (SEC)which is also known as gel permeation chromatography in case of non-aqueous samples (GPC)for complete molecular weight analysis of nanoscale particles. It is not just included the application of separating small molecules from big molecules, but it is also the separation of different sorts of oligomers (e.g. monomers, dimers, trimers, tetramers). The second dimension is adapted for separating and characterizing small molecules which can be impurities or non-reacted modifiers with high-performance liquid chromatography (HPLC). Between the dimensions it is feasible to use solid phase extraction column(s) to collect small molecules, wash off or change solvent, or minimize broadening of their peaks.


A nanoparticulate composition is disclosed for the targeted therapeutic treatment of tumours. The stable self assembled nanocomposition according to the invention comprises (i) a carrier and targeting system comprising an optionally modified polyanion, and optionally a polycation, which may also be modified; at least one targeting agent which is linked to either the polycation/modified polycation or the polyanion/modified polyanion, or both; (ii) an active compound selected from the group of epirubicin and its pharmaceutically acceptable salts, especially hydrochloride; and optionally (iii) at least one complexing agent, metal ion and stabilizer/formulating agent. The invention furthermore relates to a process for the preparation of the above-mentioned composition, the therapeutic uses thereof, and pharmaceutical compositions containing the nanocomposition according to the invention.


A nanoparticulate composition is disclosed for the targeted therapeutic treatment of tumours. The stable self assembled nanocomposition according to the invention comprises (i) a carrier and targeting system comprising an optionally modified polyanion, and optionally a polycation, which may also be modified; at least one targeting agent which is linked to either the polycation/modified polycation or the polyanion/modified polyanion, or both or to the surface of the nanoparticle; (ii) an active compound selected from the group of docetaxel and its pharmaceutically acceptable salts and derivatives especially its hydrates, especially docetaxel trihydrate and docetaxel trihydrate monohydrochloride; and optionally (iii) at least one complexing agent, a metal ion and a stabilizer/formulating agent, or a PEGylating agent. The present invention furthermore relates to a process for the preparation of the above-mentioned composition, the therapeutic uses thereof, and pharmaceutical compositions containing the nanocomposition according to the invention.


A nanoparticulate composition is disclosed for the targeted therapeutic treatment of tumours. The stable self assembled nanocomposition according to the invention comprises (i) a carrier and targeting system comprising an optionally modified polyanion, and optionally a polycation, which may also be modified; at least one targeting agent which is linked to either the polycation/modified polycation or the polyanion/modified polyanion, or both or to the surface of the nanoparticle; (ii) paclitaxel as active compound; and optionally (iii) at least one complexing agent, a metal ion and a stabilizer/formulating agent or a PEGylating agent. The invention furthermore relates to a process for the preparation of the above-mentioned composition, the therapeutic uses thereof, and pharmaceutical compositions containing the nanocomposition according to the invention.


A nanoparticulate composition for the targeted therapeutic treatment of tumours. The stable self assembled nanocomposition according to the invention comprises (i) a carrier and targeting system comprising an optionally modified polyanion, and optionally a polycation, which may also be modified; at least one targeting agent which is linked to either the polycation/modified polycation or the polyanion/modified polyanion, or both, or to the surface of the nanoparticle; (ii) an active compound selected from the group of doxorubicin and its pharmaceutically acceptable salts, especially hydrochloride; and optionally (iii) at least one complexing agent, a metal ion, a stabilizer/formulating agent, or a PEGylating agent. The present invention furthermore relates to a process for the preparation of the above-mentioned composition, the therapeutic uses thereof, and pharmaceutical compositions containing the nanocomposition according to the invention.


Patent
BBS Nanotechnology Ltd. | Date: 2013-12-19

The invention relates to cancer receptor-specific bioprobes for single photon emission computed tomography (SPECT) and computed tomography (CT) or magnetic resonance imaging (MRI) for dual modality molecular imaging. The base of the bioprobes is the self-assembled polyelectrolytes, which transport gold nanoparticles as CT contrast agents, or SPION or Gd(III) ions as MR active ligands, and are labeled using complexing agent with technetium-99m as SPECT radiopharmacon. Furthermore these dual modality SPECT/CT and SPECT/MR contrast agents are labeled with targeting moieties to realize the tumorspecificity.


Patent
Bbs Nanotechnology Ltd. | Date: 2013-12-19

New types of nanoparticle-based dual-modality positron emission tomography/magnetic resonance imaging (PET/MRI) and positron emission tomography/computed tomography (PET/CT) tumorspecific contrast agents have been developed. The base of the new type contrast agents is biopolymer-based nanoparticle with PET, MRI and CT active ligands. The nanoparticle contains at least one polyanion and polycation, which form nanoparticles via ion-ion interaction. The self-assembled polyelectrolytes can transport gold nanoparticles as CT contrast agents, or SPION or Gd(III) ions as MRI active ligands, and are labeled using a complexing agent with gallium as PET radiopharmacon. Furthermore, these dual modality PET/MRI and PET/CT contrast agents are labeled with targeting moieties to realize the tumorspecificity.


Patent
Bbs Nanotechnology Ltd. | Date: 2013-07-17

Targeting contrast agent for magnetic resonance imaging (MRI). In preferred embodiments, self-assembled polyelectrolytes coated superparamagnetic iron oxide contrast agent particles are provided, which are labeled with targeting moieties, afforded enhanced relaxivity, improved signal-to-noise and targeting ability. Accordingly, the invention relates to a stable targeting contrast nanosystem applicable for magnetic resonance imaging (MRI) having at least one nanoparticle polyelectrolyte polyanion; a targeting agent conjugated to the biopolymer; and a superparamagnetic ligand. In another embodiment the nanosystem according to the invention has at least two biocompatible and biodegradable nanoparticle polyelectrolyte biopolymer. Particularly, the superparamagnetic iron oxide particles are coated by a polyelectrolyte biopolymer and this system self-assembles with the other biopolymer to produce stable nanosystem for magnetic resonance imaging. Targeting moieties are conjugated to a biopolymer or to the self-assembled biopolymers to realize a targeted delivery of contrast agent. Methods for making these targeting MRI contrast agents are also provided.

Loading BBS Nanotechnology Ltd. collaborators
Loading BBS Nanotechnology Ltd. collaborators