BBMSC

Wenham, MA, United States
Wenham, MA, United States
SEARCH FILTERS
Time filter
Source Type

Freimuth R.R.,Mayo Medical School | Freund E.T.,3rd Millennium Inc | Schick L.,ScenPro Inc. | Sharma M.K.,Washington University in St. Louis | And 13 more authors.
Journal of the American Medical Informatics Association | Year: 2012

Objective: Meaningful exchange of information is a fundamental challenge in collaborative biomedical research. To help address this, the authors developed the Life Sciences Domain Analysis Model (LS DAM), an information model that provides a framework for communication among domain experts and technical teams developing information systems to support biomedical research. The LS DAM is harmonized with the Biomedical Research Integrated Domain Group (BRIDG) model of protocol-driven clinical research. Together, these models can facilitate data exchange for translational research. Materials and methods: The content of the LS DAM was driven by analysis of life sciences and translational research scenarios and the concepts in the model are derived from existing information models, reference models and data exchange formats. The model is represented in the Unified Modeling Language and uses ISO 21090 data types. Results: The LS DAM v2.2.1 is comprised of 130 classes and covers several core areas including Experiment, Molecular Biology, Molecular Databases and Specimen. Nearly half of these classes originate from the BRIDG model, emphasizing the semantic harmonization between these models. Validation of the LS DAM against independently derived information models, research scenarios and reference databases supports its general applicability to represent life sciences research. Discussion: The LS DAM provides unambiguous definitions for concepts required to describe life sciences research. The processes established to achieve consensus among domain experts will be applied in future iterations and may be broadly applicable to other standardization efforts. Conclusions: The LS DAM provides common semantics for life sciences research. Through harmonization with BRIDG, it promotes interoperability in translational science.


Buckler A.J.,BBMSC | Paik D.,Stanford University | Ouellette M.,BBMSC | Danagoulian J.,BBMSC | And 2 more authors.
Journal of Digital Imaging | Year: 2013

Quantitative imaging biomarkers are of particular interest in drug development for their potential to accelerate the drug development pipeline. The lack of consensus methods and carefully characterized performance hampers the widespread availability of these quantitative measures. A framework to support collaborative work on quantitative imaging biomarkers would entail advanced statistical techniques, the development of controlled vocabularies, and a service-oriented architecture for processing large image archives. Until now, this framework has not been developed. With the availability of tools for automatic ontology-based annotation of datasets, coupled with image archives, and a means for batch selection and processing of image and clinical data, imaging will go through a similar increase in capability analogous to what advanced genetic profiling techniques have brought to molecular biology. We report on our current progress on developing an informatics infrastructure to store, query, and retrieve imaging biomarker data across a wide range of resources in a semantically meaningful way that facilitates the collaborative development and validation of potential imaging biomarkers by many stakeholders. Specifically, we describe the semantic components of our system, QI-Bench, that are used to specify and support experimental activities for statistical validation in quantitative imaging © 2013 Society for Imaging Informatics in Medicine.


Buckler A.J.,BBMSC | Ouellette M.,BBMSC | Danagoulian J.,BBMSC | Wernsing G.,BBMSC | And 5 more authors.
Journal of Digital Imaging | Year: 2013

A widening array of novel imaging biomarkers is being developed using ever more powerful clinical and preclinical imaging modalities. These biomarkers have demonstrated effectiveness in quantifying biological processes as they occur in vivo and in the early prediction of therapeutic outcomes. However, quantitative imaging biomarker data and knowledge are not standardized, representing a critical barrier to accumulating medical knowledge based on quantitative imaging data. We use an ontology to represent, integrate, and harmonize heterogeneous knowledge across the domain of imaging biomarkers. This advances the goal of developing applications to (1) improve precision and recall of storage and retrieval of quantitative imaging-related data using standardized terminology; (2) streamline the discovery and development of novel imaging biomarkers by normalizing knowledge across heterogeneous resources; (3) effectively annotate imaging experiments thus aiding comprehension, re-use, and reproducibility; and (4) provide validation frameworks through rigorous specification as a basis for testable hypotheses and compliance tests. We have developed the Quantitative Imaging Biomarker Ontology (QIBO), which currently consists of 488 terms spanning the following upper classes: experimental subject, biological intervention, imaging agent, imaging instrument, image post-processing algorithm, biological target, indicated biology, and biomarker application. We have demonstrated that QIBO can be used to annotate imaging experiments with standardized terms in the ontology and to generate hypotheses for novel imaging biomarker-disease associations. Our results established the utility of QIBO in enabling integrated analysis of quantitative imaging data. © 2013 Society for Imaging Informatics in Medicine.


PubMed | BBMSC
Type: Journal Article | Journal: Journal of digital imaging | Year: 2013

A widening array of novel imaging biomarkers is being developed using ever more powerful clinical and preclinical imaging modalities. These biomarkers have demonstrated effectiveness in quantifying biological processes as they occur in vivo and in the early prediction of therapeutic outcomes. However, quantitative imaging biomarker data and knowledge are not standardized, representing a critical barrier to accumulating medical knowledge based on quantitative imaging data. We use an ontology to represent, integrate, and harmonize heterogeneous knowledge across the domain of imaging biomarkers. This advances the goal of developing applications to (1) improve precision and recall of storage and retrieval of quantitative imaging-related data using standardized terminology; (2) streamline the discovery and development of novel imaging biomarkers by normalizing knowledge across heterogeneous resources; (3) effectively annotate imaging experiments thus aiding comprehension, re-use, and reproducibility; and (4) provide validation frameworks through rigorous specification as a basis for testable hypotheses and compliance tests. We have developed the Quantitative Imaging Biomarker Ontology (QIBO), which currently consists of 488 terms spanning the following upper classes: experimental subject, biological intervention, imaging agent, imaging instrument, image post-processing algorithm, biological target, indicated biology, and biomarker application. We have demonstrated that QIBO can be used to annotate imaging experiments with standardized terms in the ontology and to generate hypotheses for novel imaging biomarker-disease associations. Our results established the utility of QIBO in enabling integrated analysis of quantitative imaging data.

Loading BBMSC collaborators
Loading BBMSC collaborators