Dallas, TX, United States
Dallas, TX, United States

Time filter

Source Type

Patent
Baylor Research Institute | Date: 2015-02-18

Embodiments provide methods and compositions related to determining treatments for colorectal cancer patients by detection and analysis of the expression level of miRNA such as miR-320e in the patients. Embodiments provide predictive, prognostic and/or diagnostics methods by identifying miRNAs that are useful for clinical management of cancer patients, particularly colorectal cancer patients or patients at risk or determined to have colorectal cancer. Methods and compositions are based, in part, on the discovery that expression of certain miRNAs in cancer patients is associated with advancing cancer stages and/or can predict the responsiveness of cancer therapy, and can, therefore, provide basis for designing treatment strategies. In particular embodiments, the miRNA molecule is miR-320, particularly miR-320e.


Patent
Baylor Research Institute | Date: 2017-03-08

The present invention includes compositions and methods for the expression, secretion and use of novel compositions for use as, e.g., vaccines and antigen delivery vectors, to delivery antigens to antigen presenting cells. In one embodiment, the vector is an anti-CD40 antibody, or fragments thereof, and one or more antigenic peptides linked to the anti-CD40 antibody or fragments thereof, including humanized antibodies.


Patent
Baylor Research Institute | Date: 2015-05-15

Described herein are compositions and methods for inhibiting an inflammatory or autoimmune response and for inducing immune tolerance in a subject in need thereof comprising administering to the subject a therapeutically effective amount of an antigen presenting cell (APC)-targeted antibody operatively linked to IL-10 or a fragment thereof. The compositions and methods described herein are useful for treating inflammatory and autoimmune disorders.


Patent
Baylor Research Institute | Date: 2015-06-02

Described herein are therapeutic approaches with immune modifiers of the Th2 pathway for the treatment of allergic and inflammatory diseases. Aspects of the disclosure relate to methods for decreasing Th2-type cell responses in a subject in need thereof comprising administering to the subject a therapeutically effective amount of an anti-Dectin-1 antibody or antigen binding fragment thereof operatively linked to a TLR agonist.


Patent
Baylor Research Institute | Date: 2017-01-09

The present invention includes compositions and methods for the expression, secretion and use of novel compositions for use as, e.g., vaccine and antigen delivery vectors, to delivery antigens to antigen presenting cells. In one embodiment, the vector is an anti-CD40 antibody, or fragments thereof, and one or more antigenic peptides linked to the anti-CD40 antibody or fragments thereof, including humanized antibodies.


Patent
Baylor Research Institute | Date: 2016-12-28

Embodiments provide methods and compositions related to determining treatments for colorectal cancer patients by detection and analysis of the expression level of miRNA such as miR-320e in the patients. Embodiments provide predictive, prognostic and/or diagnostics methods by identifying miRNAs that are useful for clinical management of cancer patients, particularly colorectal cancer patients or patients at risk or determined to have colorectal cancer. Methods and compositions are based, in part, on the discovery that expression of certain miRNAs in cancer patients is associated with advancing cancer stages and/or can predict the responsiveness of cancer therapy, and can, therefore, provide basis for designing treatment strategies. In particular embodiments, the miRNA molecule is miR-320, particularly miR-320e.


Patent
Baylor Research Institute | Date: 2017-03-22

Described herein are compositions and methods for inhibiting an inflammatory or autoimmune response and for inducing immune tolerance in a subject in need thereof comprising administering to the subject a therapeutically effective amount of an antigen presenting cell (APC)-targeted antibody operatively linked to IL-10 or a fragment thereof. The compositions and methods described herein are useful for treating inflammatory and autoimmune disorders.


Patent
Baylor Research Institute | Date: 2017-04-05

Described herein are therapeutic approaches with immune modifiers of the Th2 pathway for the treatment of allergic and inflammatory diseases. Aspects of the disclosure relate to methods for decreasing Th2-type cell responses in a subject in need thereof comprising administering to the subject a therapeutically effective amount of an anti-Dectin-1 antibody or antigen binding fragment thereof operatively linked to a TLR agonist.


Antibody responses represent a key immune protection mechanism. T follicular helper (Tfh) cells are the major CD4(+) T-cell subset that provides help to B cells to generate an antibody response. Tfh cells together with B cells form germinal centers (GCs), the site where high-affinity B cells are selected and differentiate into either memory B cells or long-lived plasma cells. We show here that interleukin-12 receptor β1 (IL-12Rβ1)-mediated signaling is important for in vivo Tfh response in humans. Although not prone to B cell-deficient-associated infections, subjects lacking functional IL-12Rβ1, a receptor for IL-12 and IL-23, displayed substantially less circulating memory Tfh and memory B cells than control subjects. GC formation in lymph nodes was also impaired in IL-12Rβ1-deficient subjects. Consistently, the avidity of tetanus toxoid-specific serum antibodies was substantially lower in these subjects than in age-matched controls. Tfh cells in tonsils from control individuals displayed the active form of signal transducer and activator of transcription 4 (STAT4), demonstrating that IL-12 is also acting on Tfh cells in GCs. Thus, our study shows that the IL-12-STAT4 axis is associated with the development and the functions of Tfh cells in vivo in humans.


Toiyama Y.,Baylor Research Institute
Journal of the National Cancer Institute | Year: 2013

The oncogenic microRNAs (miRNAs) miR-21 and miR-31 negatively regulate tumor-suppressor genes. Their potential as serum biomarkers has not been determined in human colorectal cancer (CRC). To determine whether miR-21 and miR-31 are secretory miRNAs, we screened expression in medium from 2 CRC cell lines, which was followed by serum analysis from 12 CRC patients and 12 control subjects. We validated expression of candidate miRNAs in serum samples from an independent cohort of 186 CRC patients, 60 postoperative patients, 43 advanced adenoma patients, and 53 control subjects. We analyzed miR-21 expression in 166 matched primary CRC tissues to determine whether serum miRNAs reflect expression in CRC. Patient survival analyses were performed by Kaplan-Meier analyses and Cox regression models. All statistical tests were two-sided. Although miR-21 was secreted from CRC cell lines and upregulated in serum of CRC patients, no statistically significant differences were observed in serum miR-31 expression between CRC patients and control subjects. In the validation cohort, miR-21 levels were statistically significantly elevated in preoperative serum from patients with adenomas (P < .001) and CRCs (P < .001). Importantly, miR-21 expression dropped in postoperative serum from patients who underwent curative surgery (P < .001). Serum miR-21 levels robustly distinguished adenoma (area under the curve [AUC] = 0.813; 95% confidence interval [CI] = 0.691 to 0.910) and CRC (AUC = 0.919; 95% CI = 0.867 to 0.958) patients from control subjects. High miR-21 expression in serum and tissue was statistically significantly associated with tumor size, distant metastasis, and poor survival. Moreover, serum miR-21 was an independent prognostic marker for CRC (hazard ratio = 4.12; 95% CI = 1.10 to 15.4; P = .03). Serum miR-21 is a promising biomarker for the early detection and prognosis of CRC.

Loading Baylor Research Institute collaborators
Loading Baylor Research Institute collaborators