Houston, TX, United States
Houston, TX, United States

Baylor College of Medicine , located in the Texas Medical Center in Houston, Texas, US, is a health science university. It includes a medical school, Baylor College of Medicine; the Graduate School of Biomedical science; the School of Allied Health science; and the National School of Tropical Medicine. The school, located in the middle of the world's largest medical center, is part owner of Baylor St. Luke's Medical Center, part of the CHI St. Luke's Health system, and has hospital affiliations with: Harris Health System, Texas Children's Hospital, The University of Texas MD Anderson Cancer Center, Memorial Hermann - The Institute for Rehabilitation and Research, Menninger Clinic, the Michael E. DeBakey Veterans Affairs Medical Center and Children's Hospital of San Antonio.The medical school has been consistently considered in the top-tier of programs in the country, and is particularly noted for having the lowest tuition among all private medical schools in the US. Its Graduate School of Biomedical science is among the top 30 graduate schools in the United States. Within the School of Allied Health science, the nurse anesthesia ranks 5th and the physician assistant program ranks 6th. A program in Orthotics and Prosthetics began in 2013, with 18 students in the first class. The National School of Tropical Medicine is the only school in the nation dedicated exclusively to patient care, research, education and policy related to neglected tropical diseases.On June 21, 2010, Dr. Paul Klotman was named as the new President and CEO of the Baylor College of Medicine. In January 2014, the College and CHI St. Luke's became joint owners of Baylor St. Luke's Medical Center. Wikipedia.


Time filter

Source Type

Patent
Baylor College of Medicine | Date: 2017-03-22

The present invention relates to an intraosseous nerve ablation system comprising: a boring device adapted to form a passageway in bone, thereby providing access to an intraosseous nerve within the bone; an intraosseous nerve ablation device adapted to ablate the intraosseous nerve within the bone, wherein the intraosseous nerve ablation device comprises a shaft having a first end and a second end and a length defined therebetween, wherein the first end of the shaft comprises a tip formed of an electrically conductive material, wherein the tip of the shaft is blunt; a sleeve adapted to receive the intraosseous nerve ablation device and to facilitate alignment of the nerve ablation device with the passageway; and an electric power source operatively associated with the intraosseous nerve ablation device such that electrical current from the electric power source is transmitted to the first end of the intraosseous nerve ablation device, wherein the electrical current provided by the electric power source is sufficient to ablate the intraosseous nerve.


Patent
Baylor College of Medicine | Date: 2017-03-15

Embodiments of the disclosure encompass methods of amplifying nucleic acid from one or more cells using MALBAC (multiple annealing and looping-based amplification cycles) primers. In particular embodiments, the nucleic acid is amplified as amplicons in a linear manner. Specific embodiments include the removal or effective destruction of nonlinearly produced amplicons.


Patent
Strike Bio Inc. and Baylor College of Medicine | Date: 2017-03-01

The present invention includes compositions and methods for making and using a RNAi capable of reducing expression of two or more genes, comprising: a first RNAi molecule that reduces the expression of a first target gene; a second RNAi molecule that reduces the expression of the first or a second target gene; and optionally a third RNAi molecule that reduces the expression of the first, the second, or a third target gene, wherein the RNAi molecules reduce the expression level of, e.g., mutated KRAS, SRC-3, EGFR, PIK3, NCOA3, or ERalphal, and can be, e.g., miRNAs, shRNAs, or bifunctional shRNAs.


Patent
Baylor College of Medicine and Rice University | Date: 2017-03-07

A hearing device may provide hearing-to-touch sensory substitution as a therapeutic approach to deafness. Through use of signal processing on received signals, the hearing device may provide better accuracy with the hearing-to-touch sensory substitution by extending beyond the simple filtering of an incoming audio stream as found in previous tactile hearing aids. The signal processing may include low bitrate audio compression algorithms, such as linear predictive coding, mathematical transforms, such as Fourier transforms, and/or wavelet algorithms. The processed signals may activate tactile interface devices that provide touch sensation to a user. For example, the tactile interface devices may be vibrating devices attached to a vest, which is worn by the user. The vest may also provide other types of information to the user.


Patent
Monash University, La Trobe University, Peptides International Inc. and Baylor College of Medicine | Date: 2017-06-21

Novel analogues of the sea anemone Stichodactyla helianthus toxin ShK, and their use as, for example, therapeutic agents for treating autoimmune diseases are disclosed. The analogues comprise a ShK toxin polypeptide and an N-terminal extension comprising an amino acid sequence according to formula (I): wherein X-4 is D, E or other negatively-charged amino acid or derivative thereof, X-3 is E, I, L, S, V, W or a tryptophan derivative, X-2 is any amino acid, X-1 is any amino acid, a is absent or a first additional moiety, and b is absent or a second additional moiety.


Patent
Baylor College of Medicine | Date: 2017-06-21

The present disclosure relates to methods of treating AML associated with DNMT3A mutations by administering one or more DOTIL inhibitors or related pharmaceutical compositions to subjects in need thereof.


Patent
Baylor College of Medicine and Rice University | Date: 2017-03-15

One aspect of the invention provides an artificial, flexible valve including: a stent defining a wall and a plurality of leaflets extending from the wall of the stent. The plurality of leaflets form a plurality of coaptation regions between two adjacent leaflets. The coaptation regions include extensions along a z-axis and adapted and are configured to form a releasable, but substantially complete seal when the leaflets are in a closed position. Another aspect of the invention provides an artificial, flexible valve including: a stent defining a wall and a plurality of leaflets extending from the wall of the stent. Each of the plurality of leaflets terminates in a commissure line. The commissure lines deviate from a hyperbola formed in the x-y plane by at least one deviation selected from the group consisting of: a deviation in the z-direction and one or more curves relative to the hyperbola.


Graham D.Y.,Baylor College of Medicine
Gastroenterology | Year: 2015

Helicobacter pylori infection contributes to the development of diverse gastric and extragastric diseases. The infection is necessary but not sufficient for the development of gastric adenocarcinoma. Its eradication would eliminate a major worldwide cause of cancer death, therefore there is much interest in identifying how, if, and when this can be accomplished. There are several mechanisms by which H pylori contributes to the development of gastric cancer. Gastric adenocarcinoma is one of many cancers associated with inflammation, which is induced by H pylori infection, yet the bacteria also cause genetic and epigenetic changes that lead to genetic instability in gastric epithelial cells. H pylori eradication reduces both. However, many factors must be considered in determining whether treating this bacterial infection will prevent cancer or only reduce its risk - these must be considered in designing reliable and effective eradication therapies. Furthermore, H pylori infection has been proposed to provide some benefits, such as reducing the risks of obesity or childhood asthma. When tested, these hypotheses have not been confirmed and are therefore most likely false. © 2015 by the AGA Institute.


Moyer V.A.,Baylor College of Medicine
Annals of Internal Medicine | Year: 2012

Description: Update of the 2008 U.S. Preventive Services Task Force (USPSTF) recommendation statement on screening for prostate cancer. Methods: The USPSTF reviewed new evidence on the benefits and harms of prostate-specific antigen (PSA)-based screening for prostate cancer, as well as the benefits and harms of treatment of localized prostate cancer. Recommendation: The USPSTF recommends against PSA-based screening for prostate cancer (grade D recommendation). This recommendation applies to men in the general U.S. population, regardless of age. This recommendation does not include the use of the PSA test for surveillance after diagnosis or treatment of prostate cancer; the use of the PSA test for this indication is outside the scope of the USPSTF. © 2012 American College of Physicians.


Kurtova A.V.,Baylor College of Medicine
Nature | Year: 2015

Cytotoxic chemotherapy is effective in debulking tumour masses initially; however, in some patients tumours become progressively unresponsive after multiple treatment cycles. Previous studies have demonstrated that cancer stem cells (CSCs) are selectively enriched after chemotherapy through enhanced survival. Here we reveal a new mechanism by which bladder CSCs actively contribute to therapeutic resistance via an unexpected proliferative response to repopulate residual tumours between chemotherapy cycles, using human bladder cancer xenografts. Further analyses demonstrate the recruitment of a quiescent label-retaining pool of CSCs into cell division in response to chemotherapy-induced damages, similar to mobilization of normal stem cells during wound repair. While chemotherapy effectively induces apoptosis, associated prostaglandin E2 (PGE2) release paradoxically promotes neighbouring CSC repopulation. This repopulation can be abrogated by a PGE2-neutralizing antibody and celecoxib drug-mediated blockade of PGE2 signalling. In vivo administration of the cyclooxygenase-2 (COX2) inhibitor celecoxib effectively abolishes a PGE2- and COX2-mediated wound response gene signature, and attenuates progressive manifestation of chemoresistance in xenograft tumours, including primary xenografts derived from a patient who was resistant to chemotherapy. Collectively, these findings uncover a new underlying mechanism that models the progressive development of clinical chemoresistance, and implicate an adjunctive therapy to enhance chemotherapeutic response of bladder urothelial carcinomas by abrogating early tumour repopulation.

Loading Baylor College of Medicine collaborators
Loading Baylor College of Medicine collaborators