Time filter

Source Type

Lerosey-Aubril R.,University Claude Bernard Lyon 1 | Lerosey-Aubril R.,Senckenberg Institute | Meyer R.,Bavarian State Collection of Zoology
Biological Reviews | Year: 2013

The cuticle of crustaceans bears numerous organs, of which the functions of many are unknown. One of these, the sensory dorsal organ (SDO), is present in a wide diversity of taxa. Here we critically review the variability, ultrastructure, distribution, and possible function of this enigmatic cuticular organ. Previous data are complemented by new observations on larvae and adults of various malacostracans. The SDO is composed of four sensors arranged as the corners of a square, the centre of which is occupied by a gland. Pores or pegs surrounding this central complex may also form part of the organ. The arrangement and the external aspect of the five main elements varies greatly, but this apparently has little impact on their ultrastructural organisation. The sensors and the gland are associated with a particularly thin cuticle. Each sensor contains four outer dendritic segments and the central gland is made of a single large cell. It is not yet known what this large cell secretes. The SDO is innervated from the tritocerebrum and therefore belongs to the third cephalic segment. A similar organ, here called the posterior SDO, has been repeatedly observed more posteriorly on the carapace. It resembles the SDO but has a greater number of sensors (usually six, but up to ten) apparently associated with only two outer dendritic segments. The SDO and the posterior SDO are known in the Eumalacostraca, the Hoplocarida, and the Phyllocarida. Some branchiopods also possess a 'dorsal organ' resembling both the SDO and the ion-transporting organ more typical of this group. This may indicate a common origin for these two functionally distinct groups of organs. New observations on the posterior SDO support the hypothesis that the SDO and the posterior SDO are homologous to the lattice organ complexes of thecostracans. However, the relationship between the SDO and the dorsal cephalic hump of calanoid copepods remains unclear. No correlation can be demonstrated between the presence of a SDO and a particular ecological or biological trait. In fossils, the most convincing examples of SDO-like organs are found in some Late Cambrian arthropods from the Alum Shale of southern Sweden. They suggest that related organs might have been present in non-crustacean Cambrian arthropods. The distribution of the SDO and posterior SDO in extant and fossil crustaceans strongly suggests that these organs originated early in the history of the group, and are crucial to the functioning of these organisms. However, except for knowing that the sensors are chemoreceptors and that in a given organ a functional relationship probably exists between them and the gland, little is known about this function. The description of a SDO in freshwater carideans, which can be easily reared in a laboratory, opens the way for behavioural and physiological experiments to be undertaken that could prove crucial for the determination of this function. © 2012 Cambridge Philosophical Society.

Puniamoorthy N.,University of Zurich | Puniamoorthy N.,National University of Singapore | Kotrba M.,Bavarian State Collection of Zoology | Meier R.,National University of Singapore
BMC Evolutionary Biology | Year: 2010

Background. The species-specificity of male genitalia has been well documented in many insect groups and sexual selection has been proposed as the evolutionary force driving the often rapid, morphological divergence. The internal female genitalia, in sharp contrast, remain poorly studied. Here, we present the first comparative study of the internal reproductive system of Sepsidae. We test the species-specificity of the female genitalia by comparing recently diverged sister taxa. We also compare the rate of change in female morphological characters with the rate of fast-evolving, molecular and behavioral characters. Results. We describe the ectodermal parts of the female reproductive tract for 41 species representing 21 of the 37 described genera and define 19 morphological characters with discontinuous variation found in eight structures that are part of the reproductive tract. Using a well-resolved molecular phylogeny based on 10 genes, we reconstruct the evolution of these characters across the family [120 steps; Consistency Index (CI): 0.41]. Two structures, in particular, evolve faster than the rest. The first is the ventral receptacle, which is a secondary sperm storage organ. It accounts for more than half of all the evolutionary changes observed (7 characters; 61 steps; CI: 0.46). It is morphologically diverse across genera, can be bi-lobed or multi-chambered (up to 80 chambers), and is strongly sclerotized in one clade. The second structure is the dorsal sclerite, which is present in all sepsids except Orygma luctuosum and Ortalischema albitarse. It is associated with the opening of the spermathecal ducts and is often distinct even among sister species (4 characters; 16 steps; CI: 0.56). Conclusions. We find the internal female genitalia are diverse in Sepsidae and diagnostic for all species. In particular, fast-evolving structures like the ventral receptacle and dorsal sclerite are likely involved in post-copulatory sexual selection. In comparison to behavioral and molecular data, the female structures are evolving 2/3 as fast as the non-constant third positions of the COI barcoding gene. They display less convergent evolution in characters (CI = 0.54) than the third positions or sepsid mating behavior (CICOI= 0.36; CIBEHAV= 0.45). © 2010 Puniamoorthy et al; licensee BioMed Central Ltd.

Jorger K.M.,Bavarian State Collection of Zoology | Stoger I.,Bavarian State Collection of Zoology | Kano Y.,University of Tokyo | Fukuda H.,Okayama University | And 2 more authors.
BMC Evolutionary Biology | Year: 2010

Background. A robust phylogenetic hypothesis of euthyneuran gastropods, as a basis to reconstructing their evolutionary history, is still hindered by several groups of aberrant, more or less worm-like slugs with unclear phylogenetic relationships. As a traditional "order" in the Opisthobranchia, the Acochlidia have a long history of controversial placements, among others influenced by convergent adaptation to the mainly meiofaunal habitats. The present study includes six out of seven acochlidian families in a comprehensive euthyneuran taxon sampling with special focus on minute, aberrant slugs. Since there is no fossil record of tiny, shell-less gastropods, a molecular clock was used to estimate divergence times within Euthyneura. Results. Our multi-locus molecular study confirms Acochlidia in a pulmonate relationship, as sister to Eupulmonata. Previous hypotheses of opisthobranch relations, or of a common origin with other meiofaunal Euthyneura, are clearly rejected. The enigmatic amphibious and insectivorous Aitengidae incerta sedis clusters within Acochlidia, as sister to meiofaunal and brackish Pseudunelidae and limnic Acochlidiidae. Euthyneura, Opisthobranchia and Pulmonata as traditionally defined are non-monophyletic. A relaxed molecular clock approach indicates a late Palaeozoic diversification of Euthyneura and a Mesozoic origin of the major euthyneuran diversity, including Acochlidia. Conclusions. The present study shows that the inclusion of small, enigmatic groups is necessary to solve deep-level phylogenetic relationships, and underlines that "pulmonate" and "opisthobranch" phylogeny, respectively, cannot be solved independently from each other. Our phylogenetic hypothesis requires reinvestigation of the traditional classification of Euthyneura: morphological synapomorphies of the traditionally defined Pulmonata and Opisthobranchia are evaluated in light of the presented phylogeny, and a redefinition of major groups is proposed. It is demonstrated that the invasion of the meiofaunal habitat has occurred several times independently in various euthyneuran taxa, leading to convergent adaptations previously misinterpreted as synapomorphies. The inclusion of Acochlidia extends the structural and biological diversity in pulmonates, presenting a remarkable flexibility concerning habitat choice. © 2010 Jörger et al; licensee BioMed Central Ltd.

Geiselbrecht H.,Bavarian State Collection of Zoology | Geiselbrecht H.,Ludwig Maximilians University of Munich | Melzer R.R.,Bavarian State Collection of Zoology
Arthropod Structure and Development | Year: 2013

The mandibles of decapod zoea-I larvae are robustly built masticating mouthparts equipped with several processes and spines. Superficial examination of these sturdy, inflexible structures can suggest that they are lacking sensory receptors. However, detailed TEM analysis of their ultrastructure revealed up to 11 sensillar cell clusters on the gnathal edges of the mandibles of the zoea-I in Palaemon elegans Rathke, 1837. Based on ultrastructural criteria we distinguish 7 types of sensilla: mechanoreceptors, chemoreceptors and mechano- and chemoreceptors. One sensory unit located at the base of the 'lacinia mobilis' exhibits the typical features of a crustacean mechanosensitive sensillum with an external seta and corresponding ultrastructure. Another unit shows features indicating bimodal contact chemosensitivity. A third one is similar to known olfactory chemoreceptors.Using the concept of modality-specific structures we analyse the structure and functional morphology of each sensillum, and give a comprehensive overview of the sensory abilities of zoea mandibles. We take a closer look at the ultrastructure of the 'lacinia mobilis', providing further features to trace its evolutionary history in Decapoda, and thus contributing to a better understanding of malacostracan phylogeny. © 2012 Elsevier Ltd.

Dunz A.R.,Bavarian State Collection of Zoology | Schliewen U.K.,Bavarian State Collection of Zoology
Molecular Phylogenetics and Evolution | Year: 2013

•Phylogenetic analyses of a comprehensive multilocus dataset comprising almost all haplotilapiine cichlid tribes.•Enlarged mtDNA (ND2) dataset comprising about 60% of all described Pseudocrenilabrinae genera.•A novel classification of "Tilapia" and related lineages defined by putative molecular synapomorphies. African cichlids formerly referred to as ". Tilapia" represent a paraphyletic species assemblage belonging to the so called haplotilapiine lineage which gave rise to the spectacular East African cichlid radiations (EARs) as well as to globally important aquaculture species. We present a comprehensive molecular phylogeny of representative haplotilapiine cichlids, combining in one data set four mitochondrial and five nuclear loci for 76 species, and compare it with phylogenetic information of a second data set of 378 mitochondrial ND2 haplotypes representing almost all important ". Tilapia" or Tilapia-related lineages as well as most EAR lineages. The monophyly of haplotilapiines is supported, as is the nested sister group relationship of Etia and mouthbrooding tilapiines with the remaining haplotilapiines. The latter are consistently placed in eight monophyletic clades over all datasets and analyses, but several dichotomous phylogenetic relationships appear compromised by cytonuclear discordant phylogenetic signal. Based on these results as well as on extensive morphological evidence we propose a novel generic and suprageneric classification including a (re-)diagnosis of 20 haplotilapiine cichlid genera and nine tribes. New tribes are provided for the former subgenera Coptodon Gervais, 1853, Heterotilapia Regan, 1920 and Pelmatolapia Thys van den Audenaerde, 1969, in addition for ". Tilapia" joka, Tilapia sensu stricto and Chilochromis, Etia, Steatocranus sensu stricto, the mouthbrooding tilapiines and for a clade of West African tilapiines. © 2013 Elsevier Inc..

Discover hidden collaborations