Entity

Time filter

Source Type

Atlanta, GA, United States

Systems and methods can support detecting and identifying threats associated with wireless devices. A radio receiver can collect radio frequency signals from one or more sensor antennas positioned within an electromagnetic environment. The receiver can generate data samples representing at least a portion of the radio frequency signals. Feature vectors can be generated comprising at least a portion of the data samples and attribute information. The attribute information can describe one or more features of a communicated signal within the radio frequency signals. Content of the feature vectors may be compared against signatures of known signals to identify radio frequency signals associated with a wireless attack. Content of the feature vectors may be compared against templates of known attacks to classify the identified wireless attacks. Threat information associated with the wireless attacks may be presented to one or more operator interfaces.


Systems and methods can support coprocessing radio signals and video to identify and locate a radio transmitter. Positions and orientations for cameras and RF sensors may be maintained. An RF signature associated with the radio transmitter may be received from the RF sensors to determine an RF persona. A first physical location for the radio transmitter may be estimated according to a physical radio propagation model operating on RF signals. A video stream from one or more of the cameras may be received. An individual may be identified in the video stream using computer vision techniques. A second physical location for the radio transmitter may be estimated from the video stream. Relationships may be established between the first physical location and the second physical location and between the RF persona and the identified individual. The relationships may be presented to an operator interface.


Systems and methods can support threat detection using electromagnetic signatures. One or more sensors comprising radio receivers may receive radio frequency signals within an electromagnetic environment. Radio frequency signatures may be identified from one or more of the radio frequency signals. A baseline electromagnetic environment may be established from the radio frequency signatures. The radio frequency signatures may be monitored over time to detect variations from the baseline electromagnetic environment. Variations in the electromagnetic environment may be evaluated against stored threat signatures. Operator interfaces may present indications of threats determined from evaluating the variations in the electromagnetic environment.


Electromagnetic (EM)/radio frequency (RF) emissions may be detected and corresponding EM personas may be created. One or more EM personas may be associated with a super persona corresponding to a particular entity. EM personas, super personas, and/or supplemental identifying information can be used to enforce security protocols.


Systems and methods can support identifying multiple radio transmitters as being integrated within a single communications device. Radio frequency signals may be collected using one or more sensors incorporating radio receivers. A first radio frequency signature and a second radio frequency signature may be identified within one or more of the radio frequency signals as originating respectively from a first radio transmitter and a second radio transmitter. Characteristics of the first and second radio frequency signatures may be analyzed to evaluate a relationship between the first and second radio frequency signatures. It may be determined whether or not the first and second radio transmitters are integrated within a common wireless electronic device based upon the evaluated relationship between the first radio frequency signature and the second radio frequency signature. Characteristics and behaviors associated with the wireless electronic device may be determined therefrom.

Discover hidden collaborations